@article{RM_2003_58_1_a2,
author = {L. D. Pustyl'nikov},
title = {Generalized continued fractions and ergodic theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {109--159},
year = {2003},
volume = {58},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2003_58_1_a2/}
}
L. D. Pustyl'nikov. Generalized continued fractions and ergodic theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 1, pp. 109-159. http://geodesic.mathdoc.fr/item/RM_2003_58_1_a2/
[1] A. Ya. Khinchin, Tsepnye drobi, Fizmatlit, M., 1961
[2] A. D. Bryuno, V. I. Parusnikov, “Sravnenie raznykh obobschenii tsepnykh drobei”, Matem. zametki, 61:3 (1997), 339–348 | MR | Zbl
[3] A. D. Bryuno, “Analiticheskaya forma differentsialnykh uravnenii”, Trudy MMO, 25, 1971, 119–262 | MR | Zbl
[4] J.-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque, 231, Soc. Math. de France, Paris, 1995 | Zbl
[5] L. Euler, “De relatione inter ternas pluresve quantitates instituenda”, Petersburger Academie Notiz. Exhib. August 14, 1775; vol. 2, Opuscula Analytica von Euler., 1785; L. Euler, Commentationes arithmeticae collectae., vol. II, St. Petersburg, 1849, 99–104; L. Euler, Commentationes arithmeticae, 3, ed. R. Fueter, Teubner, Leipzig, 1941, 136–145
[6] L. Dirichlet, “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen”, Dirichlet's Werke. Berlin, I (1889), 633–637
[7] C. G. J. Jacobi, “Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64
[8] L. Charve, “De la reduction des formes quadratiques ternaires positives et de leur application aux irrationelles du troisième degrée”, Ann. Sci. École Norm. Sup. (2), 9, Supplement (1880), 1–156 | MR
[9] C. Hermite, “Sur l'introduction des variables continues dans la théorie des nombres”, J. Reine Angew. Math., 41 (1851), 191–216 | Zbl
[10] A. Hurwitz, “Über die angenäherte Darstellung der Zahlen durch rationale Brüche”, Math. Ann., 44 (1894), 417–436 | DOI | MR
[11] H. Minkowski, “Généralisation de la théorie des fractions continues”, Ann. Sci. École Norm. Sup. (3), 13:2 (1896), 41–60 | MR | Zbl
[12] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359 | Zbl
[13] F. Klein, “Sur une représentation géométrique du développement en fraction continue ordinaire”, Nouv. Ann. Math., 15:3 (1896), 321–331
[14] H. Poincaré, “Sur une généralisation des fractions continues”, C. R. Acad. Sci. Paris Ser. I, 99 (1884), 1014–1016
[15] O. Perron, “Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | DOI | MR | Zbl
[16] G. F. Voronoi, Ob odnom obobschenii algoritma nepreryvnykh drobei, Izd-vo Varsh. un-ta, Varshava, 1896; РЎРѕР±СЂ. СЃРѕС‡. РІ 3 томаС..., С‚. 1, Р�Р·Рґ-РІРѕ РђРќ РЈРЎРЎР , РљРёРμРІ, 1952, 197–391
[17] A. D. Bryuno, V. I. Parusnikov, “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Matem. zametki, 56:4 (1994), 9–27 | MR | Zbl
[18] H. Davenport, “On the product of three homogeneous linear forms. II”, Proc. London Math. Soc. (2), 44 (1938), 412–431 | DOI | Zbl
[19] L. J. Mordell, “The product of three homogeneous linear ternary forms”, J. London Math. Soc., 17:2 (1942), 107–115 | DOI | MR | Zbl
[20] V. Brun, “En generalisation av Kjedebroken”, Skriften utgit av Videnskapsselskapet i Kristiania. I. Matematisk–Naturvidenskabelig Kl., 1919, no. 6; 1920, no. 6
[21] L. Bernstein, The Jacobi–Perron Algorithm: Its Theory and Application, Springer-Verlag, Berlin, 1971 | MR
[22] T. W. Cusick, “Diophantine approximation of ternary linear forms”, Math. Comp., 25:1 (1971), 163–180 | DOI | MR | Zbl
[23] T. W. Cusick, “Diophantine approximation of ternary linear forms. II”, Math. Comp., 26:4 (1972), 977–993 | DOI | MR | Zbl
[24] E. V. Podsypanin, “Ob odnom obobschenii algoritma tsepnykh drobei, svyazannom s algoritmom Viggo Bruna”, Zap. nauchn. semin. LOMI, 67 (1977), 184–194 | MR | Zbl
[25] A. J. Brentjes, Multi-dimensional Continued Fraction Algorithms, Mathematisch Centrum, Amsterdam, 1981
[26] H. Tsuchihashi, “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl
[27] H. Nakada, “On ergodic theory of A. Schmidt's complex continued fractions over Gaussian field”, Monatsh. Math., 105:2 (1988), 131–150 | DOI | MR | Zbl
[28] B. F. Skubenko, “Minimumy razlozhimykh form stepeni $n$ ot $n$ peremennykh pri $n\ge3$”, Zap. nauchn. semin. LOMI, 183 (1990), 142–154
[29] G. Lachaud, “Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Paris Ser. I Math., 317:8 (1993), 711–716 | MR | Zbl
[30] E. L. Korkina, “Dvumernye tsepnye drobi. Prosteishie primery”, Trudy MIAN, 209, 1995, 143–166 | MR | Zbl
[31] V. I. Parusnikov, “Klein polyhedra for complete decomposable forms”, Number Theory. Diophantine, computational and algebraic aspects, ed. K. Györy, Walter de Gruyter, Berlin, 1998, 453–463 | MR
[32] L. D. Pustylnikov, “Obobschennye tsepnye drobi i otsenki summ Veilya i ostatochnogo chlena v zakone raspredeleniya drobnykh chastei znachenii mnogochlena”, Matem. zametki, 56:6 (1994), 144–148 | MR
[33] L. D. Pustyl'nikov, Ergodic theory and some number theory problems, Preprint, Forschungsinstitut für Mathematik, ETH, Zürich, 1994
[34] L. D. Pustylnikov, “Beskonechnomernye obobschennye tsepnye drobi, kvadratichnye vychety i nevychety i ergodicheskaya teoriya”, UMN, 52:2 (1997), 183–184 | MR | Zbl
[35] L. D. Pustylnikov, Obobschennye tsepnye drobi i differentsialnye uravneniya, Preprint No96, In-t prikl. matem. RAN, M., 1997 | Zbl
[36] L. D. Pustylnikov, Obobschennye tsepnye drobi, svyazannye s preobrazovaniem Gaussa, Preprint No35, In-t prikl. matem. RAN, M., 1998
[37] L. D. Pustyl'nikov, “Generalized continued fractions and ergodic theory”, J. Math. Sci. (New York), 95:5 (1999), 2552–2563 | DOI | MR | Zbl
[38] L. D. Pustyl'nikov, Infinite-dimensional generalized continued fractions, distribution of quadratic residues and non-residues and ergodic theory, Preprint No99-09-08, Research Center BiBoS, Bielefeld, 1999 | MR
[39] Ya. G. Sinai, “Dinamicheskie sistemy s uprugimi otrazheniyami”, UMN, 25:2 (1970), 141–192 | MR | Zbl
[40] Ya. G. Sinai, Sovremennye problemy ergodicheskoi teorii, Fizmatlit, M., 1995 | Zbl
[41] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998 | MR | Zbl
[42] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950
[43] D. Mayer, “On the thermodynamic formalism for the Gauss map”, Commun. Math. Phys., 130:2 (1990), 311–333 | DOI | MR | Zbl
[44] S. Kim, S. Ostlund, “Simultaneous rational approximants for physicists”, Phys. Rev. A (3), 34 (1986), 3426–3434 | DOI | MR
[45] L. A. Bunimovich, “Continued fractions and geometrical optics”, Amer. Math. Soc. Transl. Ser. 2, 171 (1996), 45–55 | MR | Zbl
[46] D. Mayer, “Continued fractions and related transformations”, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces, eds. T. Bedford et al., Oxford Univ. Press, Oxford, 1991, 175–222 | MR
[47] D. Mayer, G. Roepstorff, “On the relaxation time of Gauss continued-fraction map. I: The Banach space approach. II: The Hilbert space approach”, J. Statist. Phys., 47:1/2 (1987), 149–171 ; 50:1/2 (1988), 331–344 | DOI | MR | Zbl | DOI | MR | Zbl
[48] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1975 | MR
[49] M. Fürstenberg, “Strict ergodicity and transformation of the torus”, Amer. J. Math., 83:4 (1961), 573–601 | DOI | MR
[50] L. D. Pustylnikov, “Raspredelenie drobnykh chastei znachenii mnogochlena, summy Veilya i ergodicheskaya teoriya”, UMN, 48:4 (1993), 131–166 | MR | Zbl
[51] L. D. Pustyl'nikov, “New estimates of Weyl sums and the remainder term in the law of distribution of the fractional part of a polynomial”, Ergodic Theory Dynam. Systems, 11:4 (1991), 515–534 | MR | Zbl
[52] L. D. Pustylnikov, “Veroyatnostnye i ergodicheskie zakony v raspredelenii drobnykh chastei znachenii mnogochlenov”, Matem. sb., 192:2 (2001), 103–118 | MR | Zbl
[53] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR
[54] H. Weyl, “Über die Gleichverteilung der Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl
[55] L. D. Pustyl'nikov, J. Schmeling, On some estimations of Weyl sums, Preprint No98, Weierstraß-Institut für Angewandte Analysis und Stochastic, Berlin, 1994
[56] I. M. Vinogradov, Izbrannye trudy, Izd-vo AN SSSR, M., 1952 | MR
[57] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR
[58] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Kratnye trigonometricheskie summy”, Trudy MIAN, 151, 1980, 3–128 | MR | Zbl
[59] A. Wiles, “Modular elliptic curves and Fermat's Last Theorem”, Ann. of Math. (2), 141:3 (1995), 443–551 | DOI | MR | Zbl
[60] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1965 | MR
[61] I. M. Vinogradov, “O raspredelenii stepennykh vychetov i nevychetov”, Zhurn. fiz.-matem. ob-va pri Permskom un-te, 1918, no. 1, 94–98
[62] A. O. Gelfond, Yu. V. Linnik, Elementarnye metody v analiticheskoi teorii chisel, Fizmatgiz, M., 1962
[63] H. Davenport, “On the distribution of quadratic residues $(\operatorname{mod}p)$”, J. London Math. Soc., 8 (1938), 46–52 | DOI
[64] D. Burgess, “The distribution of quadratic residues and non-residues”, Mathematika, 4 (1957), 106–112 | MR | Zbl
[65] L. D. Pustylnikov, “O raspredelenii kvadratichnykh vychetov i nevychetov i ob odnoi dinamicheskoi sisteme”, UMN, 48:1 (1993), 179–180 | MR | Zbl