Generalized continued fractions and ergodic theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 1, pp. 109-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest.
@article{RM_2003_58_1_a2,
     author = {L. D. Pustyl'nikov},
     title = {Generalized continued fractions and ergodic theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {109--159},
     year = {2003},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_1_a2/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - Generalized continued fractions and ergodic theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 109
EP  - 159
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2003_58_1_a2/
LA  - en
ID  - RM_2003_58_1_a2
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T Generalized continued fractions and ergodic theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 109-159
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2003_58_1_a2/
%G en
%F RM_2003_58_1_a2
L. D. Pustyl'nikov. Generalized continued fractions and ergodic theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 1, pp. 109-159. http://geodesic.mathdoc.fr/item/RM_2003_58_1_a2/

[1] A. Ya. Khinchin, Tsepnye drobi, Fizmatlit, M., 1961

[2] A. D. Bryuno, V. I. Parusnikov, “Sravnenie raznykh obobschenii tsepnykh drobei”, Matem. zametki, 61:3 (1997), 339–348 | MR | Zbl

[3] A. D. Bryuno, “Analiticheskaya forma differentsialnykh uravnenii”, Trudy MMO, 25, 1971, 119–262 | MR | Zbl

[4] J.-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque, 231, Soc. Math. de France, Paris, 1995 | Zbl

[5] L. Euler, “De relatione inter ternas pluresve quantitates instituenda”, Petersburger Academie Notiz. Exhib. August 14, 1775; vol. 2, Opuscula Analytica von Euler., 1785; L. Euler, Commentationes arithmeticae collectae., vol. II, St. Petersburg, 1849, 99–104; L. Euler, Commentationes arithmeticae, 3, ed. R. Fueter, Teubner, Leipzig, 1941, 136–145

[6] L. Dirichlet, “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen”, Dirichlet's Werke. Berlin, I (1889), 633–637

[7] C. G. J. Jacobi, “Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64

[8] L. Charve, “De la reduction des formes quadratiques ternaires positives et de leur application aux irrationelles du troisième degrée”, Ann. Sci. École Norm. Sup. (2), 9, Supplement (1880), 1–156 | MR

[9] C. Hermite, “Sur l'introduction des variables continues dans la théorie des nombres”, J. Reine Angew. Math., 41 (1851), 191–216 | Zbl

[10] A. Hurwitz, “Über die angenäherte Darstellung der Zahlen durch rationale Brüche”, Math. Ann., 44 (1894), 417–436 | DOI | MR

[11] H. Minkowski, “Généralisation de la théorie des fractions continues”, Ann. Sci. École Norm. Sup. (3), 13:2 (1896), 41–60 | MR | Zbl

[12] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359 | Zbl

[13] F. Klein, “Sur une représentation géométrique du développement en fraction continue ordinaire”, Nouv. Ann. Math., 15:3 (1896), 321–331

[14] H. Poincaré, “Sur une généralisation des fractions continues”, C. R. Acad. Sci. Paris Ser. I, 99 (1884), 1014–1016

[15] O. Perron, “Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | DOI | MR | Zbl

[16] G. F. Voronoi, Ob odnom obobschenii algoritma nepreryvnykh drobei, Izd-vo Varsh. un-ta, Varshava, 1896; РЎРѕР±СЂ. СЃРѕС‡. РІ 3 томаС..., С‚. 1, Р�Р·Рґ-РІРѕ РђРќ РЈРЎРЎР , РљРёРμРІ, 1952, 197–391

[17] A. D. Bryuno, V. I. Parusnikov, “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Matem. zametki, 56:4 (1994), 9–27 | MR | Zbl

[18] H. Davenport, “On the product of three homogeneous linear forms. II”, Proc. London Math. Soc. (2), 44 (1938), 412–431 | DOI | Zbl

[19] L. J. Mordell, “The product of three homogeneous linear ternary forms”, J. London Math. Soc., 17:2 (1942), 107–115 | DOI | MR | Zbl

[20] V. Brun, “En generalisation av Kjedebroken”, Skriften utgit av Videnskapsselskapet i Kristiania. I. Matematisk–Naturvidenskabelig Kl., 1919, no. 6; 1920, no. 6

[21] L. Bernstein, The Jacobi–Perron Algorithm: Its Theory and Application, Springer-Verlag, Berlin, 1971 | MR

[22] T. W. Cusick, “Diophantine approximation of ternary linear forms”, Math. Comp., 25:1 (1971), 163–180 | DOI | MR | Zbl

[23] T. W. Cusick, “Diophantine approximation of ternary linear forms. II”, Math. Comp., 26:4 (1972), 977–993 | DOI | MR | Zbl

[24] E. V. Podsypanin, “Ob odnom obobschenii algoritma tsepnykh drobei, svyazannom s algoritmom Viggo Bruna”, Zap. nauchn. semin. LOMI, 67 (1977), 184–194 | MR | Zbl

[25] A. J. Brentjes, Multi-dimensional Continued Fraction Algorithms, Mathematisch Centrum, Amsterdam, 1981

[26] H. Tsuchihashi, “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl

[27] H. Nakada, “On ergodic theory of A. Schmidt's complex continued fractions over Gaussian field”, Monatsh. Math., 105:2 (1988), 131–150 | DOI | MR | Zbl

[28] B. F. Skubenko, “Minimumy razlozhimykh form stepeni $n$ ot $n$ peremennykh pri $n\ge3$”, Zap. nauchn. semin. LOMI, 183 (1990), 142–154

[29] G. Lachaud, “Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Paris Ser. I Math., 317:8 (1993), 711–716 | MR | Zbl

[30] E. L. Korkina, “Dvumernye tsepnye drobi. Prosteishie primery”, Trudy MIAN, 209, 1995, 143–166 | MR | Zbl

[31] V. I. Parusnikov, “Klein polyhedra for complete decomposable forms”, Number Theory. Diophantine, computational and algebraic aspects, ed. K. Györy, Walter de Gruyter, Berlin, 1998, 453–463 | MR

[32] L. D. Pustylnikov, “Obobschennye tsepnye drobi i otsenki summ Veilya i ostatochnogo chlena v zakone raspredeleniya drobnykh chastei znachenii mnogochlena”, Matem. zametki, 56:6 (1994), 144–148 | MR

[33] L. D. Pustyl'nikov, Ergodic theory and some number theory problems, Preprint, Forschungsinstitut für Mathematik, ETH, Zürich, 1994

[34] L. D. Pustylnikov, “Beskonechnomernye obobschennye tsepnye drobi, kvadratichnye vychety i nevychety i ergodicheskaya teoriya”, UMN, 52:2 (1997), 183–184 | MR | Zbl

[35] L. D. Pustylnikov, Obobschennye tsepnye drobi i differentsialnye uravneniya, Preprint No96, In-t prikl. matem. RAN, M., 1997 | Zbl

[36] L. D. Pustylnikov, Obobschennye tsepnye drobi, svyazannye s preobrazovaniem Gaussa, Preprint No35, In-t prikl. matem. RAN, M., 1998

[37] L. D. Pustyl'nikov, “Generalized continued fractions and ergodic theory”, J. Math. Sci. (New York), 95:5 (1999), 2552–2563 | DOI | MR | Zbl

[38] L. D. Pustyl'nikov, Infinite-dimensional generalized continued fractions, distribution of quadratic residues and non-residues and ergodic theory, Preprint No99-09-08, Research Center BiBoS, Bielefeld, 1999 | MR

[39] Ya. G. Sinai, “Dinamicheskie sistemy s uprugimi otrazheniyami”, UMN, 25:2 (1970), 141–192 | MR | Zbl

[40] Ya. G. Sinai, Sovremennye problemy ergodicheskoi teorii, Fizmatlit, M., 1995 | Zbl

[41] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998 | MR | Zbl

[42] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950

[43] D. Mayer, “On the thermodynamic formalism for the Gauss map”, Commun. Math. Phys., 130:2 (1990), 311–333 | DOI | MR | Zbl

[44] S. Kim, S. Ostlund, “Simultaneous rational approximants for physicists”, Phys. Rev. A (3), 34 (1986), 3426–3434 | DOI | MR

[45] L. A. Bunimovich, “Continued fractions and geometrical optics”, Amer. Math. Soc. Transl. Ser. 2, 171 (1996), 45–55 | MR | Zbl

[46] D. Mayer, “Continued fractions and related transformations”, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces, eds. T. Bedford et al., Oxford Univ. Press, Oxford, 1991, 175–222 | MR

[47] D. Mayer, G. Roepstorff, “On the relaxation time of Gauss continued-fraction map. I: The Banach space approach. II: The Hilbert space approach”, J. Statist. Phys., 47:1/2 (1987), 149–171 ; 50:1/2 (1988), 331–344 | DOI | MR | Zbl | DOI | MR | Zbl

[48] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1975 | MR

[49] M. Fürstenberg, “Strict ergodicity and transformation of the torus”, Amer. J. Math., 83:4 (1961), 573–601 | DOI | MR

[50] L. D. Pustylnikov, “Raspredelenie drobnykh chastei znachenii mnogochlena, summy Veilya i ergodicheskaya teoriya”, UMN, 48:4 (1993), 131–166 | MR | Zbl

[51] L. D. Pustyl'nikov, “New estimates of Weyl sums and the remainder term in the law of distribution of the fractional part of a polynomial”, Ergodic Theory Dynam. Systems, 11:4 (1991), 515–534 | MR | Zbl

[52] L. D. Pustylnikov, “Veroyatnostnye i ergodicheskie zakony v raspredelenii drobnykh chastei znachenii mnogochlenov”, Matem. sb., 192:2 (2001), 103–118 | MR | Zbl

[53] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[54] H. Weyl, “Über die Gleichverteilung der Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl

[55] L. D. Pustyl'nikov, J. Schmeling, On some estimations of Weyl sums, Preprint No98, Weierstraß-Institut für Angewandte Analysis und Stochastic, Berlin, 1994

[56] I. M. Vinogradov, Izbrannye trudy, Izd-vo AN SSSR, M., 1952 | MR

[57] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR

[58] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Kratnye trigonometricheskie summy”, Trudy MIAN, 151, 1980, 3–128 | MR | Zbl

[59] A. Wiles, “Modular elliptic curves and Fermat's Last Theorem”, Ann. of Math. (2), 141:3 (1995), 443–551 | DOI | MR | Zbl

[60] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1965 | MR

[61] I. M. Vinogradov, “O raspredelenii stepennykh vychetov i nevychetov”, Zhurn. fiz.-matem. ob-va pri Permskom un-te, 1918, no. 1, 94–98

[62] A. O. Gelfond, Yu. V. Linnik, Elementarnye metody v analiticheskoi teorii chisel, Fizmatgiz, M., 1962

[63] H. Davenport, “On the distribution of quadratic residues $(\operatorname{mod}p)$”, J. London Math. Soc., 8 (1938), 46–52 | DOI

[64] D. Burgess, “The distribution of quadratic residues and non-residues”, Mathematika, 4 (1957), 106–112 | MR | Zbl

[65] L. D. Pustylnikov, “O raspredelenii kvadratichnykh vychetov i nevychetov i ob odnoi dinamicheskoi sisteme”, UMN, 48:1 (1993), 179–180 | MR | Zbl