Elliptic algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 6, pp. 1127-1162
Voir la notice de l'article provenant de la source Math-Net.Ru
This survey is devoted to associative $\mathbb Z_{\geqslant 0}$-graded algebras presented by $n$ generators and $\frac{n(n-1)}2$ quadratic relations and satisfying the so-called
Poincaré–Birkhoff–Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in $n$ variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.
@article{RM_2002_57_6_a1,
author = {A. V. Odesskii},
title = {Elliptic algebras},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1127--1162},
publisher = {mathdoc},
volume = {57},
number = {6},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/}
}
A. V. Odesskii. Elliptic algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 6, pp. 1127-1162. http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/