Elliptic algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 6, pp. 1127-1162

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey is devoted to associative $\mathbb Z_{\geqslant 0}$-graded algebras presented by $n$ generators and $\frac{n(n-1)}2$ quadratic relations and satisfying the so-called Poincaré–Birkhoff–Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in $n$ variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.
@article{RM_2002_57_6_a1,
     author = {A. V. Odesskii},
     title = {Elliptic algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1127--1162},
     publisher = {mathdoc},
     volume = {57},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/}
}
TY  - JOUR
AU  - A. V. Odesskii
TI  - Elliptic algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 1127
EP  - 1162
VL  - 57
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/
LA  - en
ID  - RM_2002_57_6_a1
ER  - 
%0 Journal Article
%A A. V. Odesskii
%T Elliptic algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 1127-1162
%V 57
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/
%G en
%F RM_2002_57_6_a1
A. V. Odesskii. Elliptic algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 6, pp. 1127-1162. http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/