@article{RM_2002_57_6_a1,
author = {A. V. Odesskii},
title = {Elliptic algebras},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1127--1162},
year = {2002},
volume = {57},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/}
}
A. V. Odesskii. Elliptic algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 6, pp. 1127-1162. http://geodesic.mathdoc.fr/item/RM_2002_57_6_a1/
[1] M. Artin, W. Schelter, “Graded algebras of global dimension 3”, Adv. Math., 66 (1987), 171–216 | DOI | MR | Zbl
[2] M. Artin, J. Tate, M. Van den Bergh, “Some algebras associated to automorphisms of elliptic curves”, The Grothendieck Festschrift. I, Progr. Math., 86, Birkhäuser, Boston, 1990, 33–85 | MR | Zbl
[3] M. Artin, J. Tate, M. Van den Bergh, “Modules over regular algebras of dimension 3”, Invent. Math., 106:2 (1991), 335–388 | DOI | MR | Zbl
[4] M. F. Atiyah, “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl
[5] F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz, D. Sternheimer, “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111:1 (1978), 61–110 | DOI | MR | Zbl
[6] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR
[7] A. Belavin, “Discrete groups and integrability of quantum systems”, Funct. Anal. Appl., 14 (1980), 18–26 | MR | Zbl
[8] G. Bergman, “The diamond lemma for ring theory”, Adv. Math., 29:2 (1978), 178–218 | DOI | MR | Zbl
[9] H. W. Braden, A. Gorsky, A. Odesskii, V. Rubtsov, “Double-elliptic dynamical systems from generalized Mukai–Sklyanin algebras”, Nuclear Phys. B, 633:3 (2002), 414–442 | DOI | MR | Zbl
[10] I. V. Cherednik, “Ob $R$-matrichnom kvantovanii gruppy tokov”, Teoretiko-gruppovye metody v fizike, Trudy Yurmalskoi konferentsii, t. 2 (mai 1985), Nauka, M., 1980, 218–232
[11] A. Connes, M. Dubois-Violette, Noncommutative finite-dimensional manifolds. I: Spherical manifolds and related examples, math/0107070 | MR
[12] V. G. Drinfeld, “O kvadratichnykh kommutatsionnykh sootnosheniyakh v kvaziklassicheskom sluchae”, Matematicheskaya fizika, funktsionalnyi analiz, Sb. nauchn. trudov, Naukova dumka, Kiev, 1986, 24–34
[13] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 269:1 (1987), 13–17
[14] B. Enriquez, V. N. Rubtsov, “Quantum groups in higher genus and Drinfeld's new realizations method ($\mathfrak{sl}_2$ case)”, Ann. Sci. École Norm. Sup. (4), 30:6 (1997), 821–846 | MR | Zbl
[15] H. Ewen, O. Ogievetsky, Classification of quantum matrix groups in 3 dimensions, Preprint MPI-Ph/94-1993
[16] B. Feigin, E. Frenkel, “Quantum $\mathscr W$-algebras and elliptic algebras”, Comm. Math. Phys., 178:3 (1996), 653–678 | DOI | MR | Zbl
[17] B. Feigin, M. Jimbo, T. Miwa, A. Odesskii, Ya. Pugai, “Algebra of screening operators for the deformed $W_n$ algebra”, Comm. Math. Phys., 191:3 (1998), 501–541 | DOI | MR | Zbl
[18] B. Feigin, A. Odesskij, “A family of elliptic algebras”, Internat. Math. Res. Notices, 1997, no. 11, 531–539 | DOI | MR | Zbl
[19] B. L. Feigin, A. V. Odesskij, “Coordinate ring of the quantum Grassmanian and intertwiners for the representations of Sklyanin algebras”, Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, 185, ed. B. Feigin et al., Amer. Math. Soc., Providence, RI, 1998, 55–64 | MR | Zbl
[20] B. L. Feigin, A. V. Odesskij, “Vector bundles on an elliptic curve and Sklyanin algebras”, Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, 185, ed. B. Feigin et al., Amer. Math. Soc., Providence, RI, 1998, 65–84 | MR | Zbl
[21] B. L. Feigin, A. V. Odesskij, “Functional realization of some elliptic Hamiltonian structure and bozonization of the corresponding quantum algebras”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Sci. Ser. II Math. Phys. Chem., 35, ed. S. Pakuliak et al., Kluwer, Dordrecht, 2001, 109–122 | MR | Zbl
[22] B. L. Feigin, A. V. Odesskij, “Quantized moduli spaces of the bundles on the elliptic curve and their applications”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Sci. Ser. II Math. Phys. Chem., 35, ed. S. Pakuliak et al., Kluwer, Dordrecht, 2001, 123–137 | MR | Zbl
[23] G. Felder, “Elliptic quantum groups”, Proceedings of the XIth International Congress on Mathematical Physics (Paris, 1994), International Press, Cambridge, MA, 1995, 211–218 | MR | Zbl
[24] G. Felder, V. Pasquier, “A simple construction of elliptic $R$-matrices”, Lett. Math. Phys., 32 (1994), 167–171 | DOI | MR | Zbl
[25] M. Jimbo, “Topics from Representations of $U_q(\mathfrak G)$. An Introductory Guide to Physicists”, Quantum Group and Quantum Integrable Systems, World Scientific, River Edge, 1992, 1–61 | MR
[26] M. Kontsevich, Deformation quantization of Poisson manifolds. I, math/9709180 | MR
[27] M. Kontsevich, A. Rosenberg, “Noncommutative smooth spaces”, The Gelfand Mathematical Seminar, 1996–1999, ed. I. M. Gelfand et al., Birkhäuser, Boston, 2000, 85–108 | MR | Zbl
[28] I. Krichever, A. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6 (1995), 3–56 | MR | Zbl
[29] Yu. I. Manin, “Some remarks on Koszul algebras and quantum groups”, Ann. Inst. Fourier (Grenoble), 37:4 (1987), 191–205 | MR | Zbl
[30] D. Mamford, Lektsii o teta-funktsiyakh, IO NFMI, Novokuznetsk, 1998
[31] A. V. Odesskii, “Ob odnom analoge algebr Sklyanina”, Funkts. analiz i ego pril., 20:2 (1986), 78–79 | MR | Zbl
[32] A. V. Odesskii, “Rational degeneration of elliptic quadratic algebras”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Scientific, River Edge, NY, 1992, 773–779 | MR
[33] A. V. Odesskii, “Ellipticheskie $R$-matritsy Belavina i obmennye algebry”, Funkts. analiz i ego pril., 36:1 (2002), 59–74 | MR | Zbl
[34] A. V. Odesskii, B. L. Feigin, Algebry Sklyanina, assotsiirovannye s ellipticheskoi krivoi, Izd-vo In-ta teoret. fiziki AN USSR, Kiev, 1988
[35] A. V. Odesskii, B. L. Feigin, “Ellipticheskie algebry Sklyanina”, Funkts. analiz i ego pril., 23:3 (1989), 45–54 | MR | Zbl
[36] A. V. Odesskii, B. L. Feigin, “Konstruktsii ellipticheskikh algebr Sklyanina i kvantovykh $R$-matrits”, Funkts. analiz i ego pril., 27:1 (1993), 37–45 | MR | Zbl
[37] A. V. Odesskii, B. L. Feigin, “Ellipticheskie algebry Sklyanina. Sluchai tochki konechnogo poryadka”, Funkts. analiz i ego pril., 29:2 (1995), 9–21 | MR | Zbl
[38] A. V. Odesskii, B. L. Feigin, “Ellipticheskie deformatsii algebry tokov i ikh predstavleniya raznostnymi operatorami”, Funkts. analiz i ego pril., 31:3 (1997), 57–70 | MR | Zbl
[39] A. Odesskii, V. Rubtsov, “Polinomialnye algebry Puassona s regulyarnoi strukturoi simplekticheskikh listov”, TMF, 133:1 (2002), 3–23 | MR | Zbl
[40] O. Ogievetsky, “Uses of quantum spaces”, Quantum Symmetries in Theoretical Physics and Mathematics, Contemp. Math., 294, ed. R. Coquereaux et al., Amer. Math. Soc., Providence, RI, 2002 | MR
[41] A. Polishchuk, L. Positselski, Quadratic Algebras, Preprint, 1996 | MR
[42] S. B. Priddy, “Koszul resolutions”, Trans. Amer. Math. Soc., 152:1 (1970), 39–60 | DOI | MR | Zbl
[43] J.-E. Roos, “On the characterisation of Koszul algebras. Four counter-examples”, C. R. Acad. Sci. Paris Sér. I Math., 321:1 (1995), 15–20 | MR | Zbl
[44] B. Shelton, C. Tingey, “On Koszul algebras and a new construction of Artin–Schelter regular algebras”, J. Algebra, 241:2 (2001), 789–798 | DOI | MR | Zbl
[45] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniyami Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 22–34 | MR | Zbl
[46] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniyami Yanga–Bakstera. II”, Funkts. analiz i ego pril., 17:4 (1983), 34–48 | MR | Zbl
[47] S. P. Smith, J. Tate, “The center of the 3-dimensional and $4$-dimensional Sklyanin algebras”, K-Theory, 8:1 (1994), 19–63 | DOI | MR | Zbl
[48] J. T. Stafford, M. Van den Bergh, “Noncommutative curves and noncommutative surfaces”, Bull. Amer. Math. Soc. (N.S.), 38:2 (2001), 171–216 | DOI | MR | Zbl
[49] J. T. Stafford, J. J. Zhang, “Examples in non-commutative projective geometry”, Math. Proc. Cambridge Philos. Soc., 116:3 (1994), 415–433 | DOI | MR | Zbl
[50] J. Tate, “Homology of Noetherian rings and local rings”, Illinois J. Math., 1 (1957), 14–27 | MR | Zbl
[51] M. Van den Bergh, Blowing Up of Non-Commutative Smooth Surfaces, Mem. Amer. Math. Soc., 734, Amer. Math. Soc., Providence, RI, 2001 | MR
[52] A. M. Vershik, Algebry s kvadratichnymi sootnosheniyami. Spektralnaya teoriya operatorov i beskonechnomernyi analiz, Izd-vo In-ta matematiki AN USSR, Kiev, 1984