The compactness of the set of solutions of a quasi-linearly perturbed harmonic map equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 995-996 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2002_57_5_a8,
     author = {G. Yu. Kokarev},
     title = {The compactness of the set of solutions of a~quasi-linearly perturbed harmonic map equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {995--996},
     year = {2002},
     volume = {57},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a8/}
}
TY  - JOUR
AU  - G. Yu. Kokarev
TI  - The compactness of the set of solutions of a quasi-linearly perturbed harmonic map equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 995
EP  - 996
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_5_a8/
LA  - en
ID  - RM_2002_57_5_a8
ER  - 
%0 Journal Article
%A G. Yu. Kokarev
%T The compactness of the set of solutions of a quasi-linearly perturbed harmonic map equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 995-996
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2002_57_5_a8/
%G en
%F RM_2002_57_5_a8
G. Yu. Kokarev. The compactness of the set of solutions of a quasi-linearly perturbed harmonic map equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 995-996. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a8/

[1] G. Yu. Kokarev, S. B. Kuksin, Kvazilineinye ellipticheskie differentsialnye uravneniya na otobrazheniyakh mnogoobrazii, 1, Preprint, MGU, M., 2002

[2] G. Yu. Kokarev, O kompaktnosti mnozhestva reshenii kvazilineino vozmuschennogo uravneniya garmonicheskikh otobrazhenii, Preprint, MGU, M., 2002 | MR

[3] T. Kappeler, S. Kuksin, V. Schroeder, Perturbations of the harmonic map equation, Preprint, Institute of Mathematics, University of Zürich, Zürich, 2001 | MR

[4] T. Kappeler, S. Kuksin, V. Schroeder, Poincaré inequality for maps into closed manifolds of negative sectional curvature, Preprint, Institute of Mathematics, University of Zürich, Zürich, 2002

[5] J. Sacks, K. Uhlenbeck, Ann. of Math. (2), 113:1 (1981), 1–24 | DOI | MR | Zbl