The Hirzebruch genus of a factor space by the action of a finite group and the
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 991-992 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2002_57_5_a6,
     author = {V. Grujic},
     title = {The {Hirzebruch} genus of a factor space by the action of a~finite group and the},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {991--992},
     year = {2002},
     volume = {57},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a6/}
}
TY  - JOUR
AU  - V. Grujic
TI  - The Hirzebruch genus of a factor space by the action of a finite group and the
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 991
EP  - 992
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_5_a6/
LA  - en
ID  - RM_2002_57_5_a6
ER  - 
%0 Journal Article
%A V. Grujic
%T The Hirzebruch genus of a factor space by the action of a finite group and the
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 991-992
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2002_57_5_a6/
%G en
%F RM_2002_57_5_a6
V. Grujic. The Hirzebruch genus of a factor space by the action of a finite group and the. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 991-992. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a6/

[1] M. F. Atiyah, I. M. Singer, Ann. of Math. (2), 87 (1968), 546–604 | DOI | MR

[2] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Max-Planc-Institut, Bonn, 1994

[3] D. B. Zagier, Equivariant Pontrjagin Classes and Application to Orbit Spaces, Lecture Notes in Math., 290, Springer-Verlag, Berlin, 1972 | MR | Zbl

[4] R. Stanley, Enumerative Combinatorics, Stud. Adv. Math., 49, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[5] F. Hirzebruch, Lectures on the Atiyah–Singer Theorem and its Application, Unpublished lecture notes, Berkeley, 1968

[6] I. G. McDonald, Topology, 1 (1962), 319–343 | DOI | MR

[7] P. Blagojević, V. Grujić, R. Živaljević, “Combinatorics of symmetric powers of surfaces” (to appear)