@article{RM_2002_57_5_a14,
author = {S. P. Suetin},
title = {On {Dumas'} theorem in the theory of continued fractions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1010--1012},
year = {2002},
volume = {57},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a14/}
}
S. P. Suetin. On Dumas' theorem in the theory of continued fractions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 1010-1012. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a14/
[1] S. Dumas, Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zürich, 1908 | Zbl
[2] H. Stahl, Ann. Fac. Sci. Toulouse. Math. (6). Spec. Iss., 1996, 121–193 | MR | Zbl
[3] P. L. Chebyshëv, Polnoe sobranie sochinenii, t. II, Izd-vo AN SSSR, M.–L., 1948, 103–126; 336–341 | MR
[4] H. Stahl, Constr. Approx., 2 (1986), 225–240; 241–251 | DOI | MR | Zbl
[5] J. Nuttall, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl
[6] H. Stahl, Complex Variables Theory Appl., 4 (1985), 311–324; 325–338; 339–354 | MR | Zbl
[7] N. I. Akhiezer, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl
[8] S. N. Bernshtein, O mnogochlenakh, ortogonalnykh v konechnom intervale, ONTI, Kharkov, 1937
[9] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[10] S. P. Suetin, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl