On Dumas' theorem in the theory of continued fractions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 1010-1012 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2002_57_5_a14,
     author = {S. P. Suetin},
     title = {On {Dumas'} theorem in the theory of continued fractions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1010--1012},
     year = {2002},
     volume = {57},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a14/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - On Dumas' theorem in the theory of continued fractions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 1010
EP  - 1012
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_5_a14/
LA  - en
ID  - RM_2002_57_5_a14
ER  - 
%0 Journal Article
%A S. P. Suetin
%T On Dumas' theorem in the theory of continued fractions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 1010-1012
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2002_57_5_a14/
%G en
%F RM_2002_57_5_a14
S. P. Suetin. On Dumas' theorem in the theory of continued fractions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 1010-1012. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a14/

[1] S. Dumas, Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zürich, 1908 | Zbl

[2] H. Stahl, Ann. Fac. Sci. Toulouse. Math. (6). Spec. Iss., 1996, 121–193 | MR | Zbl

[3] P. L. Chebyshëv, Polnoe sobranie sochinenii, t. II, Izd-vo AN SSSR, M.–L., 1948, 103–126; 336–341 | MR

[4] H. Stahl, Constr. Approx., 2 (1986), 225–240; 241–251 | DOI | MR | Zbl

[5] J. Nuttall, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl

[6] H. Stahl, Complex Variables Theory Appl., 4 (1985), 311–324; 325–338; 339–354 | MR | Zbl

[7] N. I. Akhiezer, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl

[8] S. N. Bernshtein, O mnogochlenakh, ortogonalnykh v konechnom intervale, ONTI, Kharkov, 1937

[9] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[10] S. P. Suetin, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl

[11] S. P. Suetin, UMN, 57:1 (2002), 45–142 | MR | Zbl