Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 999-1001 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2002_57_5_a10,
     author = {O. I. Mokhov},
     title = {Integrable {bi-Hamiltonian} hierarchies generated by compatible metrics of constant {Riemannian} curvature},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {999--1001},
     year = {2002},
     volume = {57},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a10/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 999
EP  - 1001
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_5_a10/
LA  - en
ID  - RM_2002_57_5_a10
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 999-1001
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2002_57_5_a10/
%G en
%F RM_2002_57_5_a10
O. I. Mokhov. Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 999-1001. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a10/

[1] O. I. Mokhov, Funkts. analiz i ego pril., 35:2 (2001), 24–36 ; math.DG/0005051 | MR | Zbl

[2] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 | MR | Zbl

[3] O. I. Mokhov, math.DG/0201280

[4] O. I. Mokhov, UMN, 57:3 (2002), 155–156 | MR | Zbl

[5] B. A. Dubrovin, S. P. Novikov, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[6] O. I. Mokhov, Proceedings of the International Conference “Nonlinear Evolution Equations and Dynamical Systems” (Cambridge, England, July 24–30, 2001) | MR

[7] O. I. Mokhov, UMN, 57:1 (2002), 157–158 | MR | Zbl

[8] O. I. Mokhov, UMN, 52:6 (1997), 171–172 | MR

[9] O. I. Mokhov, Tr. MIAN, 225, 1999, 284–300 | MR | Zbl

[10] B. Dubrovin, Lecture Notes in Math., 1620, 1996, 120–348 ; hep-th/9407018 | MR | Zbl

[11] O. I. Mokhov, TMF, 130:2 (2002), 233–250 ; math.DG/0005081 | MR | Zbl

[12] O. I. Mokhov, UMN, 56:2 (2001), 221–222 | MR | Zbl

[13] E. V. Ferapontov, math.DG/0005221