On classification of Lorentzian Kac–Moody algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 921-979 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general theory of Lorentzian Kac–Moody algebras is considered. This theory must serve as a hyperbolic analogue of the classical theories of finite-dimensional semisimple Lie algebras and affine Kac–Moody algebras. The first examples of Lorentzian Kac–Moody algebras were found by Borcherds. Here general finiteness results for the set of Lorentzian Kac–Moody algebras of rank $\geqslant 3$ are considered along with the classification problem for these algebras. As an example, a classification is given for Lorentzian Kac–Moody algebras of rank 3 with hyperbolic root lattice $S_t^*$, symmetry lattice $L_t^*$, and symmetry group $\widehat O^+(L_t)$, $t\in\mathbb N$, where $S_t$ and $L_t$ are given by \begin{gather*} S_t=H\oplus\langle 2t\rangle=\left(\begin{smallmatrix}00-1\\02t0\\-100\end{smallmatrix}\right), \quad L_t=H\oplus S_t=\left(\begin{smallmatrix}0000-1\\000-10\\002t00\\0-1000\\-10000\end{smallmatrix}\right), \\ H=\left(\begin{smallmatrix}0-1\\-10\end{smallmatrix}\right), \quad \end{gather*} and $\widehat O^+(L_t)=\{g\in O^+(L_t)\mid g$ is trivial on $L_t^*/L_t\}$, is the extended paramodular group. This is perhaps the first example in which a large class of Lorentzian Kac–Moody algebras has been classified.
@article{RM_2002_57_5_a1,
     author = {V. A. Gritsenko and V. V. Nikulin},
     title = {On classification of {Lorentzian} {Kac{\textendash}Moody} algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {921--979},
     year = {2002},
     volume = {57},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a1/}
}
TY  - JOUR
AU  - V. A. Gritsenko
AU  - V. V. Nikulin
TI  - On classification of Lorentzian Kac–Moody algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 921
EP  - 979
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_5_a1/
LA  - en
ID  - RM_2002_57_5_a1
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%A V. V. Nikulin
%T On classification of Lorentzian Kac–Moody algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 921-979
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2002_57_5_a1/
%G en
%F RM_2002_57_5_a1
V. A. Gritsenko; V. V. Nikulin. On classification of Lorentzian Kac–Moody algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 921-979. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a1/

[1] W. L. Baily, “Fourier–Jacobi series”, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., IX, eds. A. Borel, G. D. Mostow, Amer. Math. Soc., Providence, RI, 1966, 296–300 | MR

[2] R. Borcherds, “Vertex algebras, Kac–Moody algebras, and the monster”, Proc. Nat. Acad. Sci. U.S.A., 83:10 (1986), 3068–3071 | DOI | MR

[3] R. Borcherds, “Generalized Kac–Moody algebras”, J. Algebra, 115:2 (1988), 501–512 | DOI | MR | Zbl

[4] R. Borcherds, “The monster Lie algebra”, Adv. Math., 83:1 (1990), 30–47 | DOI | MR | Zbl

[5] R. Borcherds, “The monstrous moonshine and monstrous Lie superalgebras”, Invent. Math., 109:2 (1992), 405–444 | DOI | MR | Zbl

[6] R. Borcherds, “Sporadic groups and string theory”, Proceedings of the First European Congress of Mathematics, vol. I (Paris, 1992), Progr. Math., 119, ed. A. Joseph et al., Birkhäuser, Basel, 1994, 411–421 | MR | Zbl

[7] R. Borcherds, “Automorphic forms on $O_{s+2,2}(\mathbb R)$ and infinite products”, Invent. Math., 120:1 (1995), 161–213 | DOI | MR | Zbl

[8] R. Borcherds, “The moduli space of Enriques surfaces and the fake monster Lie superalgebra”, Topology, 35:3 (1996), 699–710 | DOI | MR | Zbl

[9] R. Borcherds, “Automorphic forms with singularities on Grassmanians”, Invent. Math., 132:3 (1998), 491–562 ; alg-geom/9609022 | DOI | MR | Zbl

[10] R. Borcherds, “What is moonshine?”, Proceedings of the International Congress of Mathematicians, vol. I (Berlin, 1998), Doc. Math., Extra Volume I, 607–616 | MR | Zbl

[11] R. Borcherds, “Vertex algebras”, Topological Field Theory, Primitive Forms and Related Topics, Progr. Math., 160, eds. M. Kashiwara et al., Birkhäuser, Boston, 1998, 35–77 ; q-alg/9706008 | MR | Zbl

[12] R. Borcherds, “Reflection groups of Lorentzian lattices”, Duke Math. J., 104:2 (2000), 319–366 ; math.GR/9909123 | DOI | MR | Zbl

[13] R. Borcherds, L. Katzarkov, T. Pantev, N. I. Shepherd-Barron, “Families of K3 surfaces”, J. Algebraic Geom., 7:1 (1998), 183–193 ; alg-geom/9701013 | MR | Zbl

[14] J. H. Bruinier, Borcherdsprodukte und Chernsche Klassen von Hirzebruch–Zagier–Zykeln, Dissertation, Universität Heidelberg, 1998

[15] J. H. Bruinier, “Borcherds products and Chern classes of Hirzebruch–Zagier divisors”, Invent. Math., 138:1 (1999), 51–83 | DOI | MR | Zbl

[16] J. H. Bruinier, Borcherds products on $O(2,l)$ and Chern classes of Heegner divisors, Habilitationsschrift, Universität Heidelberg, 2000

[17] G. L. Cardoso, “Perturbative gravitational couplings and Siegel modular forms in $D=4$, $N=2$ string models”, Nuclear Phys. B. Proc. Suppl., 56 (1997), 94–101 ; hep-th/9612200 | DOI | MR

[18] G. L. Cardoso, G. Curio, D. Lüst, “Perturbative coupling and modular forms in $N=2$ string models with a Wilson line”, Nuclear Phys. B, 491:1–2 (1997), 147–183 ; hep-th/9608154 | DOI | MR | Zbl

[19] J. H. Conway, “The automorphism group of the 26-dimensional even unimodular Lorentzian lattice”, J. Algebra, 80 (1983), 159–163 | DOI | MR | Zbl

[20] J. H. Conway, S. P. Norton, “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl

[21] R. Dijkgraaf, “The mathematics of fivebranes”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Volume III, 133–142 | MR | Zbl

[22] R. Dijkgraaf, G. Moore, E. Verlinde, H. Verlinde, “Elliptic genera of symmetric products and second quantized strings”, Comm. Math. Phys., 185:1 (1997), 197–209 ; hep-th/9608096 | DOI | MR | Zbl

[23] R. Dijkgraaf, E. Verlinde, H. Verlinde, “Counting dyons in $N=4$ string theory”, Nuclear Phys. B, 484:3 (1997), 543–561 ; hep-th/9607026 | DOI | MR | Zbl

[24] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progr. Math., 55, Birkhäuser, Boston, 1985 | MR | Zbl

[25] I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, 1988 | MR | Zbl

[26] H. Garland, J. Lepowsky, “Lie algebra homology and the Macdonald–Kac formulas”, Invent. Math., 34 (1976), 37–76 | DOI | MR | Zbl

[27] P. Goddard, “The work of Richard Ewen Borcherds”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Volume I, 99–108 | MR

[28] P. Goddard, C. B. Thorn, “Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model”, Phys. Lett. B, 40:2 (1972), 235–238 | DOI

[29] V. A. Gritsenko, “Funktsii Yakobi $n$ peremennykh”, Zap. nauch. semin. LOMI, 168 (1988), 32–45

[30] V. A. Gritsenko, “Arithmetical lifting and its applications”, Number Theory, Proceedings of Paris Seminar 1992–93, London Math. Soc. Lecture Note Ser., 215, ed. S. David, Cambridge Univ. Press, Cambridge, 1995, 103–126 | MR | Zbl

[31] V. A. Gritsenko, “Modulyarnye formy i prostranstva modulei abelevykh i K3 poverkhnostei”, Algebra i analiz, 6:6 (1994), 65–102 | MR | Zbl

[32] V. A. Gritsenko, “Irrationality of the moduli spaces of polarized Abelian surfaces”, Internat. Math. Res. Notices, 6 (1994), 235–243 | DOI | MR | Zbl

[33] V. A. Gritsenko, “Ellipticheskii rod mnogoobrazii Kalabi–Yao i modulyarnye formy Yakobi i Zigelya”, Algebra i analiz, 11:5 (1999), 100–125 ; math.AG/9906190 | MR

[34] V. A. Gritsenko, Complex vector bundles and Jacobi forms, Preprint No 76, Max Planck Institute of Mathematics, Bonn, 1999 ; math.AG/9906191 | MR

[35] V. A. Gritsenko, K. Hulek, “Minimal Siegel modular threefolds”, Math. Proc. Cambridge Philos. Soc., 123:3 (1998), 461–485 ; alg-geom/9506017 | DOI | MR | Zbl

[36] V. A. Gritsenko, V. V. Nikulin, “Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras”, Amer. J. Math., 119:1 (1997), 181–224 ; alg-geom/9504006 | DOI | MR | Zbl

[37] V. A. Gritsenko, V. V. Nikulin, “Automorphic correction of a Lorentzian Kac–Moody algebra”, C. R. Acad. Sci. Paris Sér. I Math., 321:9 (1995), 1151–1156 | MR | Zbl

[38] V. A. Gritsenko, V. V. Nikulin, “K3 surfaces, Lorentzian Kac–Moody algebras and mirror symmetry”, Math. Res. Lett., 3:2 (1996), 211–229 ; alg-geom/9510008 | MR | Zbl

[39] V. A. Gritsenko, V. V. Nikulin, “Modulyarnye formy Iguzy i “samye prostye” lorentsevy algebry Katsa–Mudi”, Matem. sb., 187:11 (1996), 27–66 ; alg-geom/9603010 | MR | Zbl

[40] V. A. Gritsenko, V. V. Nikulin, “Automorphic forms and Lorentzian Kac–Moody algebras. I”, Internat. J. Math., 9:2 (1998), 153–199 ; alg-geom/9610022 | DOI | MR | Zbl

[41] V. A. Gritsenko, V. V. Nikulin, “Automorphic forms and Lorentzian Kac–Moody algebras. II”, Internat. J. Math., 9:2 (1998), 201–275 ; alg-geom/9611028 | DOI | MR | Zbl

[42] V. A. Gritsenko, V. V. Nikulin, “The arithmetic mirror symmetry and Calabi–Yau manifolds”, Comm. Math. Phys., 210:1 (2000), 1–11 ; alg-geom/9612002 | DOI | MR | Zbl

[43] V. A. Gritsenko, V. V. Nikulin, A lecture about classification of Lorentzian Kac–Moody algebras of the rank three, Preprint NI00036-SGT, Isaak Newton Institute for Mathematical Sciences, Cambridge, 2000 ; alg-geom/0010329 | MR

[44] V. A. Gritsenko, V. V. Nikulin, “On the classification of meromorphic automorphic products and related Lorentzian Kac–Moody algebras with respect to the extended paramodular group” (to appear)

[45] J. Harvey, G. Moore, “Algebras, BPS-states, and strings”, Nuclear Phys. B, 463:2–3 (1996), 315–368 ; hep-th/9510182 | DOI | MR | Zbl

[46] J. Igusa, “On Siegel modular forms of genus two. II”, Amer. J. Math., 86:2 (1964), 392–412 | DOI | MR | Zbl

[47] V. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1990 | MR

[48] V. Kac, “Infinite-dimensional algebras, Dedekind's $\eta$-function, classical Möbius function and the very strange formula”, Adv. Math., 30 (1978), 85–136 | DOI | MR | Zbl

[49] V. Kac, Vertex Algebras for Beginners, Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[50] V. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory”, Lie Theory and Geometry, Progr. Math., 123, eds. J.-L. Brylinski et al., Birkhäuser, Boston, 1994, 415–456 | MR | Zbl

[51] T. Kawai, “$N=2$ heterotic string threshold correction, K3 surfaces and generalized Kac–Moody superalgebra”, Phys. Lett. B, 371:1–2 (1996), 59–64 ; hep-th/9512046 | MR

[52] T. Kawai, “String duality and modular forms”, Phys. Lett. B, 397 (1997), 51–62 ; hep-th/9607078 | DOI | MR

[53] T. Kawai, K. Yoshioka, “String partition functions and infinite products”, Adv. Theor. Math. Phys., 4:2 (2000), 397–485 ; hep-th/0002169 | MR | Zbl

[54] Sh. Kondō, “On the Kodaira dimension of the moduli space of K3 surfaces. II”, Compositio Math., 116:2 (1999), 111–117 | DOI | MR | Zbl

[55] H. Maaß, “Über ein Analogon zur Vermutung von Saito–Kurokawa”, Invent. Math., 60 (1980), 85–104 | DOI | MR | Zbl

[56] G. Moore, “String duality, automorphic forms, and generalized Kac–Moody algebras”, Nuclear Phys. B. Proc. Suppl., 67 (1998), 56–67 ; hep-th/9710198 | DOI | MR | Zbl

[57] V. V. Nikulin, “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl

[58] V. V. Nikulin, “O faktor-gruppakh grupp avtomorfizmov tselochislennykh giperbolicheskikh form po podgruppam, porozhdennym 2-otrazheniyami. Algebro-geometricheskie prilozheniya”, Sovr. probl. matem., 18, VINITI, M., 1981, 3–114 | MR

[59] V. V. Nikulin, “Ob arifmeticheskikh gruppakh, porozhdennykh otrazheniyami v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 637–669 | MR | Zbl

[60] V. V. Nikulin, “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 113–142 | MR | Zbl

[61] V. V. Nikulin, “Discrete reflection groups in Lobachevsky spaces and algebraic surfaces”, Proceedings of the International Congress of Mathematicians (Berkeley, 1986), 1, 1987, 654–669 | MR

[62] V. V. Nikulin, A lecture on Kac–Moody Lie algebras of the arithmetic type, Preprint No 1994-16, Queen's University, Kingston, 1994 ; alg-geom/9412003 | MR

[63] V. V. Nikulin, “Basis of the diagram method for generalized reflection groups in Lobachevsky spaces and algebraic surfaces with nef anticanonical class”, Internat. J. Math., 7:1 (1996), 71–108 | DOI | MR | Zbl

[64] V. V. Nikulin, “Gruppy otrazhenii v prostranstvakh Lobachevskogo i tozhdestvo dlya znamenatelya lorentsevykh algebr Katsa–Mudi”, Izv. AN SSSR. Ser. matem., 60:2 (1996), 73–106 ; alg-geom/9503003 | MR | Zbl

[65] V. V. Nikulin, “The remark on discriminants of moduli of K3 surfaces as sets of zeros of automorphic forms”, J. Math. Sci., 81:3 (1996), 2738–2743 ; alg-geom/9512018 | DOI | MR | Zbl

[66] V. V. Nikulin, “K3 surfaces with interesting groups of automorphisms”, J. Math. Sci., 95:1 (1999), 2028–2048 ; alg-geom/9701011 | DOI | MR | Zbl

[67] V. V. Nikulin, “Teoriya lorentsevykh algebr Katsa–Mudi”, Trudy mezhd. konf., posvyasch. 90-letiyu so dnya rozhd. L. S. Pontryagina. T. 8: Algebra, Itogi nauki i tekhniki. Sovr. matem. i ee pril. Temat. obzory, 69, VINITI, M., 1999, 147–167 ; math.AG/9810001

[68] V. V. Nikulin, “O klassifikatsii giperbolicheskikh sistem kornei ranga tri”, Tr. MIAN, 230, 2000, 1–241 ; ; ; alg-geom/9711032alg-geom/9712033math.AG/9905150

[69] U. Ray, “A character formula for generalized Kac–Moody superalgebras”, J. Algebra, 177:1 (1995), 154–163 | DOI | MR | Zbl

[70] U. Ray, “Generalized Kac–Moody algebras and some related topics”, Bull. Amer. Math. Soc., 38:1 (2001), 1–42 | DOI | MR | Zbl

[71] E. B. Vinberg, “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Trudy MMO, 47 (1984), 68–102 | MR | Zbl

[72] E. B. Vinberg, “Giperbolicheskie gruppy otrazhenii”, UMN, 40:1 (1985), 29–66 | MR | Zbl

[73] É. B. Vinberg, “Discrete reflection groups in Lobachevsky spaces”, Proceedings of the International Congress of Mathematicians (Warsaw, 1983), 1, 1984, 593–601 | MR | Zbl