@article{RM_2002_57_5_a1,
author = {V. A. Gritsenko and V. V. Nikulin},
title = {On classification of {Lorentzian} {Kac{\textendash}Moody} algebras},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {921--979},
year = {2002},
volume = {57},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a1/}
}
V. A. Gritsenko; V. V. Nikulin. On classification of Lorentzian Kac–Moody algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 921-979. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a1/
[1] W. L. Baily, “Fourier–Jacobi series”, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., IX, eds. A. Borel, G. D. Mostow, Amer. Math. Soc., Providence, RI, 1966, 296–300 | MR
[2] R. Borcherds, “Vertex algebras, Kac–Moody algebras, and the monster”, Proc. Nat. Acad. Sci. U.S.A., 83:10 (1986), 3068–3071 | DOI | MR
[3] R. Borcherds, “Generalized Kac–Moody algebras”, J. Algebra, 115:2 (1988), 501–512 | DOI | MR | Zbl
[4] R. Borcherds, “The monster Lie algebra”, Adv. Math., 83:1 (1990), 30–47 | DOI | MR | Zbl
[5] R. Borcherds, “The monstrous moonshine and monstrous Lie superalgebras”, Invent. Math., 109:2 (1992), 405–444 | DOI | MR | Zbl
[6] R. Borcherds, “Sporadic groups and string theory”, Proceedings of the First European Congress of Mathematics, vol. I (Paris, 1992), Progr. Math., 119, ed. A. Joseph et al., Birkhäuser, Basel, 1994, 411–421 | MR | Zbl
[7] R. Borcherds, “Automorphic forms on $O_{s+2,2}(\mathbb R)$ and infinite products”, Invent. Math., 120:1 (1995), 161–213 | DOI | MR | Zbl
[8] R. Borcherds, “The moduli space of Enriques surfaces and the fake monster Lie superalgebra”, Topology, 35:3 (1996), 699–710 | DOI | MR | Zbl
[9] R. Borcherds, “Automorphic forms with singularities on Grassmanians”, Invent. Math., 132:3 (1998), 491–562 ; alg-geom/9609022 | DOI | MR | Zbl
[10] R. Borcherds, “What is moonshine?”, Proceedings of the International Congress of Mathematicians, vol. I (Berlin, 1998), Doc. Math., Extra Volume I, 607–616 | MR | Zbl
[11] R. Borcherds, “Vertex algebras”, Topological Field Theory, Primitive Forms and Related Topics, Progr. Math., 160, eds. M. Kashiwara et al., Birkhäuser, Boston, 1998, 35–77 ; q-alg/9706008 | MR | Zbl
[12] R. Borcherds, “Reflection groups of Lorentzian lattices”, Duke Math. J., 104:2 (2000), 319–366 ; math.GR/9909123 | DOI | MR | Zbl
[13] R. Borcherds, L. Katzarkov, T. Pantev, N. I. Shepherd-Barron, “Families of K3 surfaces”, J. Algebraic Geom., 7:1 (1998), 183–193 ; alg-geom/9701013 | MR | Zbl
[14] J. H. Bruinier, Borcherdsprodukte und Chernsche Klassen von Hirzebruch–Zagier–Zykeln, Dissertation, Universität Heidelberg, 1998
[15] J. H. Bruinier, “Borcherds products and Chern classes of Hirzebruch–Zagier divisors”, Invent. Math., 138:1 (1999), 51–83 | DOI | MR | Zbl
[16] J. H. Bruinier, Borcherds products on $O(2,l)$ and Chern classes of Heegner divisors, Habilitationsschrift, Universität Heidelberg, 2000
[17] G. L. Cardoso, “Perturbative gravitational couplings and Siegel modular forms in $D=4$, $N=2$ string models”, Nuclear Phys. B. Proc. Suppl., 56 (1997), 94–101 ; hep-th/9612200 | DOI | MR
[18] G. L. Cardoso, G. Curio, D. Lüst, “Perturbative coupling and modular forms in $N=2$ string models with a Wilson line”, Nuclear Phys. B, 491:1–2 (1997), 147–183 ; hep-th/9608154 | DOI | MR | Zbl
[19] J. H. Conway, “The automorphism group of the 26-dimensional even unimodular Lorentzian lattice”, J. Algebra, 80 (1983), 159–163 | DOI | MR | Zbl
[20] J. H. Conway, S. P. Norton, “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl
[21] R. Dijkgraaf, “The mathematics of fivebranes”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Volume III, 133–142 | MR | Zbl
[22] R. Dijkgraaf, G. Moore, E. Verlinde, H. Verlinde, “Elliptic genera of symmetric products and second quantized strings”, Comm. Math. Phys., 185:1 (1997), 197–209 ; hep-th/9608096 | DOI | MR | Zbl
[23] R. Dijkgraaf, E. Verlinde, H. Verlinde, “Counting dyons in $N=4$ string theory”, Nuclear Phys. B, 484:3 (1997), 543–561 ; hep-th/9607026 | DOI | MR | Zbl
[24] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progr. Math., 55, Birkhäuser, Boston, 1985 | MR | Zbl
[25] I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, 1988 | MR | Zbl
[26] H. Garland, J. Lepowsky, “Lie algebra homology and the Macdonald–Kac formulas”, Invent. Math., 34 (1976), 37–76 | DOI | MR | Zbl
[27] P. Goddard, “The work of Richard Ewen Borcherds”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Volume I, 99–108 | MR
[28] P. Goddard, C. B. Thorn, “Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model”, Phys. Lett. B, 40:2 (1972), 235–238 | DOI
[29] V. A. Gritsenko, “Funktsii Yakobi $n$ peremennykh”, Zap. nauch. semin. LOMI, 168 (1988), 32–45
[30] V. A. Gritsenko, “Arithmetical lifting and its applications”, Number Theory, Proceedings of Paris Seminar 1992–93, London Math. Soc. Lecture Note Ser., 215, ed. S. David, Cambridge Univ. Press, Cambridge, 1995, 103–126 | MR | Zbl
[31] V. A. Gritsenko, “Modulyarnye formy i prostranstva modulei abelevykh i K3 poverkhnostei”, Algebra i analiz, 6:6 (1994), 65–102 | MR | Zbl
[32] V. A. Gritsenko, “Irrationality of the moduli spaces of polarized Abelian surfaces”, Internat. Math. Res. Notices, 6 (1994), 235–243 | DOI | MR | Zbl
[33] V. A. Gritsenko, “Ellipticheskii rod mnogoobrazii Kalabi–Yao i modulyarnye formy Yakobi i Zigelya”, Algebra i analiz, 11:5 (1999), 100–125 ; math.AG/9906190 | MR
[34] V. A. Gritsenko, Complex vector bundles and Jacobi forms, Preprint No 76, Max Planck Institute of Mathematics, Bonn, 1999 ; math.AG/9906191 | MR
[35] V. A. Gritsenko, K. Hulek, “Minimal Siegel modular threefolds”, Math. Proc. Cambridge Philos. Soc., 123:3 (1998), 461–485 ; alg-geom/9506017 | DOI | MR | Zbl
[36] V. A. Gritsenko, V. V. Nikulin, “Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras”, Amer. J. Math., 119:1 (1997), 181–224 ; alg-geom/9504006 | DOI | MR | Zbl
[37] V. A. Gritsenko, V. V. Nikulin, “Automorphic correction of a Lorentzian Kac–Moody algebra”, C. R. Acad. Sci. Paris Sér. I Math., 321:9 (1995), 1151–1156 | MR | Zbl
[38] V. A. Gritsenko, V. V. Nikulin, “K3 surfaces, Lorentzian Kac–Moody algebras and mirror symmetry”, Math. Res. Lett., 3:2 (1996), 211–229 ; alg-geom/9510008 | MR | Zbl
[39] V. A. Gritsenko, V. V. Nikulin, “Modulyarnye formy Iguzy i “samye prostye” lorentsevy algebry Katsa–Mudi”, Matem. sb., 187:11 (1996), 27–66 ; alg-geom/9603010 | MR | Zbl
[40] V. A. Gritsenko, V. V. Nikulin, “Automorphic forms and Lorentzian Kac–Moody algebras. I”, Internat. J. Math., 9:2 (1998), 153–199 ; alg-geom/9610022 | DOI | MR | Zbl
[41] V. A. Gritsenko, V. V. Nikulin, “Automorphic forms and Lorentzian Kac–Moody algebras. II”, Internat. J. Math., 9:2 (1998), 201–275 ; alg-geom/9611028 | DOI | MR | Zbl
[42] V. A. Gritsenko, V. V. Nikulin, “The arithmetic mirror symmetry and Calabi–Yau manifolds”, Comm. Math. Phys., 210:1 (2000), 1–11 ; alg-geom/9612002 | DOI | MR | Zbl
[43] V. A. Gritsenko, V. V. Nikulin, A lecture about classification of Lorentzian Kac–Moody algebras of the rank three, Preprint NI00036-SGT, Isaak Newton Institute for Mathematical Sciences, Cambridge, 2000 ; alg-geom/0010329 | MR
[44] V. A. Gritsenko, V. V. Nikulin, “On the classification of meromorphic automorphic products and related Lorentzian Kac–Moody algebras with respect to the extended paramodular group” (to appear)
[45] J. Harvey, G. Moore, “Algebras, BPS-states, and strings”, Nuclear Phys. B, 463:2–3 (1996), 315–368 ; hep-th/9510182 | DOI | MR | Zbl
[46] J. Igusa, “On Siegel modular forms of genus two. II”, Amer. J. Math., 86:2 (1964), 392–412 | DOI | MR | Zbl
[47] V. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1990 | MR
[48] V. Kac, “Infinite-dimensional algebras, Dedekind's $\eta$-function, classical Möbius function and the very strange formula”, Adv. Math., 30 (1978), 85–136 | DOI | MR | Zbl
[49] V. Kac, Vertex Algebras for Beginners, Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[50] V. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory”, Lie Theory and Geometry, Progr. Math., 123, eds. J.-L. Brylinski et al., Birkhäuser, Boston, 1994, 415–456 | MR | Zbl
[51] T. Kawai, “$N=2$ heterotic string threshold correction, K3 surfaces and generalized Kac–Moody superalgebra”, Phys. Lett. B, 371:1–2 (1996), 59–64 ; hep-th/9512046 | MR
[52] T. Kawai, “String duality and modular forms”, Phys. Lett. B, 397 (1997), 51–62 ; hep-th/9607078 | DOI | MR
[53] T. Kawai, K. Yoshioka, “String partition functions and infinite products”, Adv. Theor. Math. Phys., 4:2 (2000), 397–485 ; hep-th/0002169 | MR | Zbl
[54] Sh. Kondō, “On the Kodaira dimension of the moduli space of K3 surfaces. II”, Compositio Math., 116:2 (1999), 111–117 | DOI | MR | Zbl
[55] H. Maaß, “Über ein Analogon zur Vermutung von Saito–Kurokawa”, Invent. Math., 60 (1980), 85–104 | DOI | MR | Zbl
[56] G. Moore, “String duality, automorphic forms, and generalized Kac–Moody algebras”, Nuclear Phys. B. Proc. Suppl., 67 (1998), 56–67 ; hep-th/9710198 | DOI | MR | Zbl
[57] V. V. Nikulin, “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl
[58] V. V. Nikulin, “O faktor-gruppakh grupp avtomorfizmov tselochislennykh giperbolicheskikh form po podgruppam, porozhdennym 2-otrazheniyami. Algebro-geometricheskie prilozheniya”, Sovr. probl. matem., 18, VINITI, M., 1981, 3–114 | MR
[59] V. V. Nikulin, “Ob arifmeticheskikh gruppakh, porozhdennykh otrazheniyami v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 637–669 | MR | Zbl
[60] V. V. Nikulin, “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 113–142 | MR | Zbl
[61] V. V. Nikulin, “Discrete reflection groups in Lobachevsky spaces and algebraic surfaces”, Proceedings of the International Congress of Mathematicians (Berkeley, 1986), 1, 1987, 654–669 | MR
[62] V. V. Nikulin, A lecture on Kac–Moody Lie algebras of the arithmetic type, Preprint No 1994-16, Queen's University, Kingston, 1994 ; alg-geom/9412003 | MR
[63] V. V. Nikulin, “Basis of the diagram method for generalized reflection groups in Lobachevsky spaces and algebraic surfaces with nef anticanonical class”, Internat. J. Math., 7:1 (1996), 71–108 | DOI | MR | Zbl
[64] V. V. Nikulin, “Gruppy otrazhenii v prostranstvakh Lobachevskogo i tozhdestvo dlya znamenatelya lorentsevykh algebr Katsa–Mudi”, Izv. AN SSSR. Ser. matem., 60:2 (1996), 73–106 ; alg-geom/9503003 | MR | Zbl
[65] V. V. Nikulin, “The remark on discriminants of moduli of K3 surfaces as sets of zeros of automorphic forms”, J. Math. Sci., 81:3 (1996), 2738–2743 ; alg-geom/9512018 | DOI | MR | Zbl
[66] V. V. Nikulin, “K3 surfaces with interesting groups of automorphisms”, J. Math. Sci., 95:1 (1999), 2028–2048 ; alg-geom/9701011 | DOI | MR | Zbl
[67] V. V. Nikulin, “Teoriya lorentsevykh algebr Katsa–Mudi”, Trudy mezhd. konf., posvyasch. 90-letiyu so dnya rozhd. L. S. Pontryagina. T. 8: Algebra, Itogi nauki i tekhniki. Sovr. matem. i ee pril. Temat. obzory, 69, VINITI, M., 1999, 147–167 ; math.AG/9810001
[68] V. V. Nikulin, “O klassifikatsii giperbolicheskikh sistem kornei ranga tri”, Tr. MIAN, 230, 2000, 1–241 ; ; ; alg-geom/9711032alg-geom/9712033math.AG/9905150
[69] U. Ray, “A character formula for generalized Kac–Moody superalgebras”, J. Algebra, 177:1 (1995), 154–163 | DOI | MR | Zbl
[70] U. Ray, “Generalized Kac–Moody algebras and some related topics”, Bull. Amer. Math. Soc., 38:1 (2001), 1–42 | DOI | MR | Zbl
[71] E. B. Vinberg, “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Trudy MMO, 47 (1984), 68–102 | MR | Zbl
[72] E. B. Vinberg, “Giperbolicheskie gruppy otrazhenii”, UMN, 40:1 (1985), 29–66 | MR | Zbl
[73] É. B. Vinberg, “Discrete reflection groups in Lobachevsky spaces”, Proceedings of the International Congress of Mathematicians (Warsaw, 1983), 1, 1984, 593–601 | MR | Zbl