Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 847-920
Voir la notice de l'article provenant de la source Math-Net.Ru
Spectral boundary-value problems with discrete spectrum are considered for second-order strongly elliptic systems of partial differential equations in a domain $\Omega\subset\mathbb R^n$ whose boundary $\Gamma$ is compact and may be $C^\infty$, $C^{1,1}$, or Lipschitz. The principal part of the system is assumed to be Hermitian and to satisfy an additional condition ensuring that the Neumann problem is coercive. The spectral parameter occurs either in the system (then $\Omega$ is assumed to be bounded) or in a first-order boundary condition. Also considered are transmission problems in $\mathbb R^n\setminus\Gamma$ with spectral parameter in the transmission condition on $\Gamma$. The corresponding operators in $L_2(\Omega)$ or $L_2(\Gamma)$ are self-adjoint operators or weak perturbations of self-adjoint ones. Under some additional conditions a discussion is given of the smoothness, completeness, and basis properties of eigenfunctions or root functions in the Sobolev $L_2$-spaces $H^t(\Omega)$ or $H^t(\Gamma)$ of non-zero order $t$ as well as of localization and the asymptotic behaviour of the eigenvalues. The case of Coulomb singularities in the zero-order term of the system is also covered.
@article{RM_2002_57_5_a0,
author = {M. S. Agranovich},
title = {Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {847--920},
publisher = {mathdoc},
volume = {57},
number = {5},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_5_a0/}
}
TY - JOUR AU - M. S. Agranovich TI - Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 847 EP - 920 VL - 57 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2002_57_5_a0/ LA - en ID - RM_2002_57_5_a0 ER -
%0 Journal Article %A M. S. Agranovich %T Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 847-920 %V 57 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2002_57_5_a0/ %G en %F RM_2002_57_5_a0
M. S. Agranovich. Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 5, pp. 847-920. http://geodesic.mathdoc.fr/item/RM_2002_57_5_a0/