Linear maps preserving the Dieudonné determinant over an arbitrary skew field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 807-808 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2002_57_4_a9,
     author = {A. \`E. Guterman},
     title = {Linear maps preserving the {Dieudonn\'e} determinant over an arbitrary skew field},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {807--808},
     year = {2002},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a9/}
}
TY  - JOUR
AU  - A. È. Guterman
TI  - Linear maps preserving the Dieudonné determinant over an arbitrary skew field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 807
EP  - 808
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a9/
LA  - en
ID  - RM_2002_57_4_a9
ER  - 
%0 Journal Article
%A A. È. Guterman
%T Linear maps preserving the Dieudonné determinant over an arbitrary skew field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 807-808
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a9/
%G en
%F RM_2002_57_4_a9
A. È. Guterman. Linear maps preserving the Dieudonné determinant over an arbitrary skew field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 807-808. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a9/

[1] G. Frobenius, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1897, 994–1015 | Zbl

[2] L. B. Beasley, C.-K. Li, S. Pierce, Linear and Multilinear Algebra, 33:1–2 (1992), 109–119 | DOI | MR

[3] W. J. Wong, J. Algebra, 113:2 (1988), 263–293 | DOI | MR | Zbl

[4] J. Dieudonné, Bull. Soc. Math. France, 71 (1943), 27–45 | MR | Zbl

[5] A. E. Guterman, E. M. Kreines, A. V. Mikhalev, Matem. metody i pril., 5 (1997), 119–132 | MR

[6] A. Guterman, Linear and Multilinear Algebra, 48:4 (2001), 293–311 | DOI | MR | Zbl

[7] L. K. Hua, J. Chinese Math. Soc. (N.S.), 1 (1951), 110–163 | MR