Cyclic families of polylinear recurring sequences over quasi-Frobenius modules
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 803-804
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2002_57_4_a7,
author = {E. V. Gorbatov and A. A. Nechaev},
title = {Cyclic families of polylinear recurring sequences over {quasi-Frobenius} modules},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {803--804},
year = {2002},
volume = {57},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a7/}
}
TY - JOUR AU - E. V. Gorbatov AU - A. A. Nechaev TI - Cyclic families of polylinear recurring sequences over quasi-Frobenius modules JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 803 EP - 804 VL - 57 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a7/ LA - en ID - RM_2002_57_4_a7 ER -
E. V. Gorbatov; A. A. Nechaev. Cyclic families of polylinear recurring sequences over quasi-Frobenius modules. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 803-804. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a7/
[1] K. Feis, Algebra, 2, Mir, M., 1979 | MR
[2] V. L. Kurakin, A. S. Kuzmin, A. V. Mikhalev, A. A. Nechaev, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[3] A. A. Nechaev, Proceedings of the First International Taiwan–Moscow Algebra Workshop (Taiwan, 1994), de Gruyter, Berlin, 1996, 283–298 | MR | Zbl
[4] P. Z. Lu, M. L. Liu, Algebra Colloq., 6:3 (1999), 349–360 | MR | Zbl
[5] P. Z. Lu, Appl. Algebra Engrg. Comm. Comput., 11:2 (2000), 141–156 | DOI | MR
[6] F. Kash, Moduli i koltsa, Mir, M., 1981 | MR