Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 753-784

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a study of an abstract model of a second-order non-linear elliptic boundary-value problem in a cylindrical domain by the methods of the theory of dynamical systems. It is shown that, under some natural conditions, the essential solutions of the problem in question are described by means of the global attractor of the corresponding trajectory dynamical system, and this attractor can have infinite fractal dimension and infinite topological entropy. Moreover, sharp upper and lower bounds are obtained for the Kolmogorov $\varepsilon$-entropy of these attractors.
@article{RM_2002_57_4_a4,
     author = {A. Mielke and S. V. Zelik},
     title = {Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {753--784},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/}
}
TY  - JOUR
AU  - A. Mielke
AU  - S. V. Zelik
TI  - Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 753
EP  - 784
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/
LA  - en
ID  - RM_2002_57_4_a4
ER  - 
%0 Journal Article
%A A. Mielke
%A S. V. Zelik
%T Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 753-784
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/
%G en
%F RM_2002_57_4_a4
A. Mielke; S. V. Zelik. Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 753-784. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/