Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 753-784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a study of an abstract model of a second-order non-linear elliptic boundary-value problem in a cylindrical domain by the methods of the theory of dynamical systems. It is shown that, under some natural conditions, the essential solutions of the problem in question are described by means of the global attractor of the corresponding trajectory dynamical system, and this attractor can have infinite fractal dimension and infinite topological entropy. Moreover, sharp upper and lower bounds are obtained for the Kolmogorov $\varepsilon$-entropy of these attractors.
@article{RM_2002_57_4_a4,
     author = {A. Mielke and S. V. Zelik},
     title = {Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {753--784},
     year = {2002},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/}
}
TY  - JOUR
AU  - A. Mielke
AU  - S. V. Zelik
TI  - Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 753
EP  - 784
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/
LA  - en
ID  - RM_2002_57_4_a4
ER  - 
%0 Journal Article
%A A. Mielke
%A S. V. Zelik
%T Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 753-784
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/
%G en
%F RM_2002_57_4_a4
A. Mielke; S. V. Zelik. Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 753-784. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a4/

[1] S. Agmon, L. Nirenberg, “Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space”, Comm. Pure Appl. Math., 20 (1967), 207–229 | DOI | MR | Zbl

[2] A. V. Babin, “Attraktor obobschennoi polugruppy, porozhdennoi ellipticheskim uravneniem v tsilindricheskoi oblasti”, Izv. RAN. Ser. matem., 58:2 (1994), 3–18 | MR | Zbl

[3] A. V. Babin, “Inertial manifolds for traveling-wave solutions of reaction-diffusion systems”, Comm. Pure Appl. Math., 48:2 (1995), 167–198 | DOI | MR | Zbl

[4] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[5] T. J. Bridges, A. Mielke, “Instability of spatially-periodic states for a family of semilinear PDE's on an infinite strip”, Math. Nachr., 179 (1996), 5–25 | DOI | MR | Zbl

[6] À. Calsina, X. Mora, J. Solà-Morales, “The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit”, J. Differential Equations, 102:2 (1993), 244–304 | DOI | MR | Zbl

[7] À. Calsina, J. Solà-Morales, M. València, “Bounded solutions of some nonlinear elliptic equations in cylindrical domains”, J. Dynam. Differential Equations, 9:3 (1997), 343–372 | DOI | MR | Zbl

[8] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | MR | Zbl

[9] M. I. Vishik, V. V. Chepyzhov, “Kolmogorovskaya $\varepsilon$-entropiya attraktorov istem reaktsii-diffuzii”, Matem. sb., 189:2 (1998), 81–110 | MR | Zbl

[10] P. Collet, J.-P. Eckmann, “Extensive properties of the complex Ginzburg–Landau equation”, Comm. Math. Phys., 200:3 (1999), 699–722 | DOI | MR | Zbl

[11] P. Collet, J.-P. Eckmann, “Topological entropy and $\varepsilon$-entropy for damped hyperbolic equations”, Ann. Henri Poincaré, 1 (2000), 715–752 | DOI | MR | Zbl

[12] G. Dangelmayr, B. Fiedler, K. Kirchgässner, A. Mielke, Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability, Pitman Res. Notes Math. Ser., 352, Longman, Harlow, 1996 | MR

[13] M. A. Efendiev, S. V. Zelik, “The attractor for a nonlinear reaction-diffusion system in an unbounded domain”, Comm. Pure Appl. Math., 54:6 (2001), 625–688 | DOI | MR | Zbl

[14] M. A. Efendiev, S. V. Zelik, “Upper and lower bounds for the Kolmogorov entropy of the attractor for an RDE in an unbounded domain”, J. Dynam. Differential Equations, 14:2 (2002), 369–403 | DOI | MR | Zbl

[15] B. Fiedler, A. Scheel, M. I. Vishik, “Large patterns of elliptic systems in infinite cylinders”, J. Math. Pures Appl. (9), 77:9 (1998), 879–907 | MR | Zbl

[16] M. D. Groves, J. F. Toland, “On variational formulations for steady water waves”, Arch. Rational Mech. Anal., 137:3 (1997), 203–226 | DOI | MR | Zbl

[17] G. Iooss, K. Kirchgässner, “Water waves for small surface tension: an approach via normal form”, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 267–299 | MR | Zbl

[18] G. Iooss, A. Mielke, “Bifurcating time-periodic solutions of Navier–Stokes equations in infinite cylinders”, J. Nonlinear Sci., 1:1 (1991), 107–146 | DOI | MR | Zbl

[19] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995 | MR

[20] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differential Equations, 45 (1982), 113–127 | DOI | MR | Zbl

[21] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR | Zbl

[22] E. Lindenstraus, B. Weiss, “Mean topological dimension”, Israel J. Math., 115 (2000), 1–24 | DOI | MR | Zbl

[23] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl

[24] A. Mielke, “Normal hyperbolicity of center manifolds and Saint-Venant's principle”, Arch. Rational Mech. Anal., 110:4 (1990), 353–372 | DOI | MR | Zbl

[25] A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds. With applications to elliptic variational problems, Lecture Notes in Math., 1489, Springer-Verlag, Berlin, 1991 | MR

[26] A. Mielke, “On nonlinear problems of mixed type: a qualitative theory using infinite-dimensional center manifolds”, J. Dynam. Differential Equations, 4 (1992), 419–443 | DOI | MR | Zbl

[27] A. Mielke, “Floquet theory for, and bifurcations from spatially periodic patterns”, Tatra Mt. Math. Publ., 4 (1994), 153–158 | MR | Zbl

[28] A. Mielke, “Essential manifolds for an elliptic problem in an infinite strip”, J. Differential Equations, 110:2 (1994), 322–355 | DOI | MR | Zbl

[29] A. Mielke, “The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors”, Nonlinearity, 10:1 (1997), 199–222 | DOI | MR | Zbl

[30] A. Mielke, “Exponentially weighted $L^\infty$-estimates and attractors for parabolic systems on unbounded domains”, International Conference on Differential Equations, EQUADIFF 99 (Berlin, 1999), eds. B. Fiedler, K. Gröger, and J. Sprekels, World Scientific, Singapore, 2000, 641–646 | MR | Zbl

[31] A. Mielke, G. Schneider, “Attractors for modulation equations on unbounded domains – existence and comparison”, Nonlinearity, 8:5 (1995), 743–768 | DOI | MR | Zbl

[32] D. Peterhof, B. Sandstede, A. Scheel, “Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders”, J. Differential Equations, 140:2 (1997), 266–308 | DOI | MR | Zbl

[33] B.-W. Schulze, M. I. Vishik, I. Witt, S. V. Zelik, “The trajectory attractor for a nonlinear elliptic system in a cylindrical domain with piecewise smooth boundary”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 23 (1999), 125–166 | MR

[34] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988 | MR | Zbl

[35] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978 | MR | Zbl

[36] M. I. Vishik, S. V. Zelik, “Traektornyi attraktor nelineinoi ellipticheskoi sistemy v tsilindricheskoi oblasti”, Matem. sb., 187:12 (1996), 21–56 | MR | Zbl

[37] M. I. Vishik, S. V. Zelik, “Regulyarnyi attraktor nelineinoi ellipticheskoi sistemy v tsilindricheskoi oblasti”, Matem. sb., 190:6 (1999), 23–58 | MR | Zbl

[38] S. V. Zelik, “Attraktor nelineinoi sistemy reaktsii-diffuzii v $\mathbb R^n$ i otsenki ego $\varepsilon$-entropii”, Matem. zametki, 65:6 (1999), 941–944 | MR | Zbl

[39] S. V. Zelik, The attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Preprint 32/00, DANSE, Berlin, 2000 | MR

[40] S. V. Zelik, Spatial and dynamical chaos generated by reaction diffusion systems in unbounded domains, Preprint 38/00, DANSE, Berlin, 2000 | MR

[41] S. V. Zelik, “The attractor for a nonlinear hyperbolic equation in an unbounded domain”, Discrete Contin. Dynam. Systems, 7:3 (2001), 593–641 | DOI | MR | Zbl

[42] S. V. Zelik, “The attractor for a nonlinear reaction-diffusion system in an unbounded domain and Kolmogorov's $\varepsilon$-entropy”, Math. Nachr., 232:1 (2001), 129–179 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl