Homogenization of a random non-stationary convection-diffusion problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 729-751 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The homogenization problem is studied for a non-stationary convection-diffusion equation with rapidly oscillating coefficients periodic in the spatial variables and stationary random in the time. Under the assumption that the coefficients of the equation have rather good mixing properties, it is shown that, in properly chosen moving coordinates, the distribution of the solution of the original problem converges to the solution of the limit stochastic partial differential equation. The homogenized problem is well-posed and determines the limit measure uniquely.
@article{RM_2002_57_4_a3,
     author = {M. L. Kleptsyna and A. L. Piatnitski},
     title = {Homogenization of a~random non-stationary convection-diffusion problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {729--751},
     year = {2002},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a3/}
}
TY  - JOUR
AU  - M. L. Kleptsyna
AU  - A. L. Piatnitski
TI  - Homogenization of a random non-stationary convection-diffusion problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 729
EP  - 751
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a3/
LA  - en
ID  - RM_2002_57_4_a3
ER  - 
%0 Journal Article
%A M. L. Kleptsyna
%A A. L. Piatnitski
%T Homogenization of a random non-stationary convection-diffusion problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 729-751
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a3/
%G en
%F RM_2002_57_4_a3
M. L. Kleptsyna; A. L. Piatnitski. Homogenization of a random non-stationary convection-diffusion problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 729-751. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a3/

[1] D. G. Aronson, “Bounds for the fundamental solutions of a parabolic equation”, Bull. Amer. Math. Soc., 73 (1967), 890–896 | DOI | MR | Zbl

[2] M. Avellaneda, A. J. Majda, “Mathematical models with exact renormalization for turbulent transport”, Comm. Math. Phys., 131:2 (1990), 381–429 | DOI | MR | Zbl

[3] M. Avellaneda, A. J. Majda, “Simple examples with features of renormalization for turbulent transport”, Philos. Trans. Roy. Soc. London Ser. A, 346:1679 (1994), 205–233 | DOI | MR | Zbl

[4] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland, Amsterdam, 1978 | MR

[5] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[6] R. Bouc, E. Pardoux, “Asymptotic analysis of p.d.e.s with wide-band noise disturbances, and expansion of the moments”, Stochastic Anal. Appl., 2:4 (1984), 369–422 | DOI | MR | Zbl

[7] F. Campillo, M. Kleptsyna, A. Piatnitski, “Homogenization of random parabolic operator with large potential”, Stochastic Process. Appl., 93:1 (2001), 57–85 | DOI | MR | Zbl

[8] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[9] A. Fannjiang, G. Papanicolaou, “Convection enhanced diffusion for periodic flows”, SIAM J. Appl. Math., 54:2 (1994), 333–408 | DOI | MR | Zbl

[10] A. Fannjiang, G. Papanicolaou, “Diffusion in turbulence”, Probab. Theory Related Fields, 105:3 (1996), 279–334 | MR | Zbl

[11] J. Garnier, “Homogenization in a periodic and time-dependent potential”, SIAM J. Appl. Math., 57:1 (1997), 95–111 | DOI | MR | Zbl

[12] V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994 | MR

[13] M. Kleptsyna, A. Piatnitski, “Homogenization of random parabolic operators”, Homogenization and Applications to Material Sciences, Proceedings of the International Conference (Nice, 1995), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1997, 241–255 | MR

[14] S. M. Kozlov, “Privodimost kvaziperiodicheskikh differentsialnykh operatorov i usrednenie”, Trudy MMO, 46 (1983), 99–123 | MR

[15] S. M. Kozlov, A. L. Pyatnitskii, “Usrednenie na fone ischezayuschei vyazkosti”, Matem. sb., 181:6 (1990), 813–832 | MR | Zbl

[16] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[17] R. Sh. Liptser, A. N. Shiryaev, Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl

[18] R. Sh. Liptser, A. N. Shiryaev, Teoriya martingalov, Nauka, M., 1986 | MR | Zbl

[19] E. Pardoux, “Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: a probabilistic approach”, J. Funct. Anal., 167:2 (1999), 498–520 | DOI | MR | Zbl

[20] E. Pardoux, A. Yu. Veretennikov, “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 | DOI | MR | Zbl

[21] A. L. Pyatnitskii, “Usrednenie singulyarno vozmuschennogo uravneniya s bystroostsilliruyuschimi koeffitsientami v sloe”, Matem. sb., 121:1 (1983), 18–39 | MR

[22] N. S. Trudinger, “Pointwise estimates and quasilinear parabolic equations”, Comm. Pure Appl. Math., 21 (1968), 205–226 | DOI | MR | Zbl

[23] M. Viot, Solutions Faibles d'Équations Dérivées Stochastiques Non Linéaires, Thèse, Université Paris VI, 1976

[24] V. V. Zhikov, “Zamechaniya k probleme ostatochnoi diffuzii”, UMN, 44:6 (1989), 155–156 | MR | Zbl

[25] V. V. Zhikov, “Diffuziya v neszhimaemom sluchainom potoke”, Funkts. analiz i ego pril., 31:3 (1997), 10–22 | MR | Zbl