Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 709-728 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rate of convergence of solutions and attractors to the corresponding solutions and attractors of the limit homogenized equation is estimated.
@article{RM_2002_57_4_a2,
     author = {B. Fiedler and M. I. Vishik},
     title = {Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {709--728},
     year = {2002},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a2/}
}
TY  - JOUR
AU  - B. Fiedler
AU  - M. I. Vishik
TI  - Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 709
EP  - 728
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a2/
LA  - en
ID  - RM_2002_57_4_a2
ER  - 
%0 Journal Article
%A B. Fiedler
%A M. I. Vishik
%T Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 709-728
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a2/
%G en
%F RM_2002_57_4_a2
B. Fiedler; M. I. Vishik. Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 709-728. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a2/

[1] J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5/6 (1992), 841–866 | DOI | MR | Zbl

[2] A. V. Babin, M. I. Vishik, “Regular attractors of semigroups and evolution equations”, J. Math. Pures Appl. (9), 62:4 (1983), 441–491 | MR | Zbl

[3] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[4] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Math. Math. Phys., 45, Cambridge Univ. Press, Cambridge, 1957 | MR | Zbl

[5] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[6] A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential Attractors for Dissipative Evolution Equations, Res. Appl. Math., 37, Wiley/Masson, Chichester/Paris, 1994 | MR | Zbl

[7] B. Fiedler, M. Vishik, Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms, Preprint, 2000 | MR

[8] B. Fiedler, M. Vishik, “Quantitative homogenization of analytic semigroups and reaction-diffusion equations with Diophantine spatial frequencies”, Adv. Differential Equations, 6:11 (2001), 1377–1408 | MR | Zbl

[9] J. Hale, “Asymptotic behaviour and dynamics in infinite dimensions”, Res. Notes Math., 132 (1985), 1–42 | MR | Zbl

[10] J. K. Hale, G. Raugel, “Lower semicontinuity of attractors of gradient systems and applications”, Ann. Mat. Pura Appl., 154 (1989), 281–326 | DOI | MR | Zbl

[11] A. Haraux, “Two remarks on hyperbolic dissipative problems”, Res. Notes Math., 122 (1985), 161–179 | MR | Zbl

[12] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, New York, 1981 | MR | Zbl

[13] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., 132, Springer-Verlag, Berlin, 1966 | MR

[14] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983 | MR | Zbl

[15] G. Raugel, “Global attractors of partial differential equations”, Handbook of Dynamical Systems, 2, ed. B. Fiedler, Elsevier, Amsterdam, 2002 | Zbl

[16] H. Tanabe, Equations of Evolution, Pitman, London, 1979 | MR | Zbl

[17] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | MR | Zbl