How to recognize constant functions. Connections with Sobolev spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 693-708

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for a function $f\in L^p$ to belong to $W^{1,p}$ $(p>1)$ or to $BV$ $(p=1)$ is given. Various integral conditions under which a measurable function is constant are discussed.
@article{RM_2002_57_4_a1,
     author = {H. Brezis},
     title = {How to recognize constant functions. {Connections} with {Sobolev} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {693--708},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/}
}
TY  - JOUR
AU  - H. Brezis
TI  - How to recognize constant functions. Connections with Sobolev spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 693
EP  - 708
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/
LA  - en
ID  - RM_2002_57_4_a1
ER  - 
%0 Journal Article
%A H. Brezis
%T How to recognize constant functions. Connections with Sobolev spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 693-708
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/
%G en
%F RM_2002_57_4_a1
H. Brezis. How to recognize constant functions. Connections with Sobolev spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 693-708. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/