How to recognize constant functions. Connections with Sobolev spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 693-708
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion for a function $f\in L^p$ to belong to $W^{1,p}$ $(p>1)$ or to $BV$ $(p=1)$ is given. Various integral conditions under which a measurable function is constant are discussed.
@article{RM_2002_57_4_a1,
author = {H. Brezis},
title = {How to recognize constant functions. {Connections} with {Sobolev} spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {693--708},
publisher = {mathdoc},
volume = {57},
number = {4},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/}
}
TY - JOUR AU - H. Brezis TI - How to recognize constant functions. Connections with Sobolev spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 693 EP - 708 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/ LA - en ID - RM_2002_57_4_a1 ER -
H. Brezis. How to recognize constant functions. Connections with Sobolev spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 693-708. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/