How to recognize constant functions. Connections with Sobolev spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 693-708 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion for a function $f\in L^p$ to belong to $W^{1,p}$ $(p>1)$ or to $BV$ $(p=1)$ is given. Various integral conditions under which a measurable function is constant are discussed.
@article{RM_2002_57_4_a1,
     author = {H. Brezis},
     title = {How to recognize constant functions. {Connections} with {Sobolev} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {693--708},
     year = {2002},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/}
}
TY  - JOUR
AU  - H. Brezis
TI  - How to recognize constant functions. Connections with Sobolev spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 693
EP  - 708
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/
LA  - en
ID  - RM_2002_57_4_a1
ER  - 
%0 Journal Article
%A H. Brezis
%T How to recognize constant functions. Connections with Sobolev spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 693-708
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/
%G en
%F RM_2002_57_4_a1
H. Brezis. How to recognize constant functions. Connections with Sobolev spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 693-708. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a1/

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl

[2] L. Ambrosio, P. Tilli, Selected Topics on “Analysis in Metric Spaces”, Lecture Notes, Scuola Normale Superiore Pisa, Pisa, 2000 | MR

[3] F. Bethuel, F. Demengel, “Extensions for Sobolev mappings between manifolds”, Calc. Var. Partial Differential Equations, 3:4 (1995), 475–491 | MR | Zbl

[4] J. Bourgain, H. Brézis, P. Mironescu, “Lifting in Sobolev spaces”, J. Anal. Math., 80 (2000), 37–86 | DOI | MR | Zbl

[5] J. Bourgain, H. Brézis, P. Mironescu, “On the structure of the Sobolev space $H^{1/2}$ with values into the circle”, C. R. Acad. Sci. Paris Sér. I Math., 331:2 (2000), 119–124 | MR | Zbl

[6] J. Bourgain, H. Brézis, P. Mironescu, “Another look at Sobolev spaces”, Optimal Control and Partial Differential Equations, In honour of Professor A. Bensoussan's 60th Birthday, eds. J. L. Menaldi et al., IOS Press, Amsterdam, 2001, 439–455 | Zbl

[7] J. Bourgain, H. Brézis, P. Mironescu, “Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications”, J. Anal. Math. (to appear) | MR

[8] H. Brézis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983 ; Dunod, Paris, 1999 | MR | Zbl

[9] H. Brézis, J.-M. Coron, “Large solutions for harmonic maps in two dimensions”, Comm. Math. Phys., 92 (1983), 203–215 | DOI | MR | Zbl

[10] H. Brézis, L. Nirenberg, “Degree theory of BMO. I: Compact manifolds without boundaries”, Selecta Math., 1:2 (1995), 197–263 | DOI | MR | Zbl

[11] H. Brézis, Y. Li, P. Mironescu, L. Nirenberg, “Degree and Sobolev spaces”, Topol. Methods Nonlinear Anal., 13:2 (1999), 181–190 | MR | Zbl

[12] J. Davila, “On an open question about functions of bounded variation”, Calc. Var. Partial Differential Equations, 15:4 (2002), 519–527 | DOI | MR | Zbl

[13] D. Gilbarg, N. S. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[14] P. Hajlasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., 688, Amer. Math. Soc., Providence, RI, 2000 | MR

[15] R. Hardt, D. Kinderlehrer, F. H. Lin, “The variety of configurations of static liquid crystals”, Variational Methods, Progr. Nonlinear Differential Equations Appl., 4, eds. H. Berestycki et al., Birkhäuser, Boston, 1990, 115–131 | MR

[16] N. Korevaar, R. Schoen, “Sobolev spaces and harmonic maps for metric space targets”, Comm. Anal. Geom., 1:4 (1993), 561–659 | MR | Zbl

[17] V. Maz'ya, T. Shaposhnikova, “On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces”, J. Funct. Anal., 195:2 (2002), 230–238 | DOI | MR