Essential self-adjointness of Schrödinger-type operators on manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 641-692 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several conditions are obtained ensuring the essential self-adjointness of a Schrödinger-type operator $H_V=D^*D+V$, where $D$ is a first-order elliptic differential operator acting on the space of sections of a Hermitian vector bundle $E$ over a manifold $M$ with positive smooth measure $d\mu$ and $V$ is a Hermitian bundle endomorphism. These conditions are expressed in terms of completeness of certain metrics on $M$ naturally associated with $H_V$. The results generalize theorems of Titchmarsh, Sears, Rofe-Beketov, Oleinik, Shubin, and Lesch. It is not assumed a priori that $M$ is endowed with a complete Riemannian metric. This enables one to treat, for instance, operators acting on bounded domains in $\mathbb R^n$ with Lebesgue measure. Singular potentials $V$ are also admitted. In particular, a new self-adjointness condition is obtained for a Schrödinger operator on $\mathbb R^n$ whose potential has a Coulomb-type singularity and can tend to $-\infty$ at infinity. For the special case in which the principal symbol of $D^*D$ is scalar, more precise results are established for operators with singular potentials. The proofs of these facts are based on a refined Kato-type inequality modifying and improving a result of Hess, Schrader, and Uhlenbrock.
@article{RM_2002_57_4_a0,
     author = {M. Braverman and O. Milatovic and M. A. Shubin},
     title = {Essential self-adjointness of {Schr\"odinger-type} operators on manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {641--692},
     year = {2002},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/}
}
TY  - JOUR
AU  - M. Braverman
AU  - O. Milatovic
AU  - M. A. Shubin
TI  - Essential self-adjointness of Schrödinger-type operators on manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 641
EP  - 692
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/
LA  - en
ID  - RM_2002_57_4_a0
ER  - 
%0 Journal Article
%A M. Braverman
%A O. Milatovic
%A M. A. Shubin
%T Essential self-adjointness of Schrödinger-type operators on manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 641-692
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/
%G en
%F RM_2002_57_4_a0
M. Braverman; O. Milatovic; M. A. Shubin. Essential self-adjointness of Schrödinger-type operators on manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 641-692. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl

[2] M. Aizenman, B. Simon, “Brownian motion and Harnack inequality for Schrödinger operators”, Comm. Pure Appl. Math., 35:2 (1982), 209–273 | DOI | MR | Zbl

[3] R. Beals, “On spectral theory and scattering for elliptic operators with singular potentials”, Pacific J. Math., 37 (1971), 7–20 | MR

[4] Yu. M. Berezanskii, Razlozheniya po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[5] F. A. Berezin, M. A. Shubin, Uravnenie Shrëdingera, Izd-vo MGU, M., 1983 | MR

[6] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Grundlehren Math. Wiss., 298, Springer-Verlag, Berlin, 1992 | MR

[7] M. Braverman, “On self-adjointness of Schrödinger operator on differential forms”, Proc. Amer. Math. Soc., 126:2 (1998), 617–623 | DOI | MR | Zbl

[8] H. Brézis, ““Localized” self-adjointness of Schrödinger operators”, J. Operator Theory, 1 (1979), 287–290 | MR | Zbl

[9] H. Brézis, F. E. Browder, “Sur une propriété des espaces de Sobolev”, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), 113–115 | MR | Zbl

[10] H. Brézis, F. E. Browder, “A property of Sobolev spaces”, Comm. Partial Differential Equations, 4 (1979), 1077–1083 | DOI | MR | Zbl

[11] H. Brézis, F. E. Browder, “Some properties of higher order Sobolev spaces”, J. Math. Pures Appl. (9), 61 (1982), 245–259 | MR | Zbl

[12] A. G. Brusentsev, “O samosopryazhennosti v suschestvennom poluogranichennykh elllipticheskikh operatorov vtorogo poryadka, ne podchinennykh usloviyu polnoty rimanova mnogoobraziya”, Matem. fiz., anal., geom., 2:2 (1995), 152–167 | MR

[13] A. G. Brusentsev, “Povedenie okolo granitsy potentsiala ellipticheskogo operatora, garantiruyuschee ego samosopryazhennost v suschestvennom”, Matem. fiz., anal., geom., 5:3/4 (1998), 149–165 | MR | Zbl

[14] T. Carleman, “Sur la théorie mathématique de l'équation de Schrödinger”, Ark. Mat. Astron. Fys., 24B:11 (1934), 1–7

[15] C. Cascante, J. Ortega, I. Verbitsky, “Trace inequalities of Sobolev type in the upper triangle case”, Proc. London Math. Soc. (3), 80:2 (2000), 391–414 | DOI | MR | Zbl

[16] P. Chernoff, “Essential self-adjointness of powers of generators of hyperbolic equations”, J. Funct. Anal., 12 (1973), 401–414 | DOI | MR | Zbl

[17] P. Chernoff, “Schrödinger and Dirac operators with singular potentials and hyperbolic equations”, Pacific J. Math., 72:2 (1977), 361–382 | MR | Zbl

[18] A. A. Chumak, “Samosopryazhennost operatora Beltrami–Laplasa na polnom parakompaktnom mnogoobrazii bez kraya”, Ukr. matem. zhurn., 25:6 (1973), 784–791 | MR | Zbl

[19] S. Clark, F. Gesztesy, On Povzner–Wienholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators, , 2002 math.SP/0203141 | MR

[20] E. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[21] H. O. Cordes, “Self-adjointness of powers of elliptic operators on non-compact manifolds”, Math. Ann., 195 (1972), 257–272 | DOI | MR | Zbl

[22] H. O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, London Math. Soc. Lecture Note Ser., 76, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[23] Kh. Tsikon, R. Frëze, V. Kirsh, B. Saimon, Operatory Shrëdingera s prilozheniyami v kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[24] H. Donnelly, N. Garofalo, “Schrödinger operators on manifolds, essential self-adjointness, and absence of eigenvalues”, J. Geom. Anal., 7:2 (1997), 241–257 | MR | Zbl

[25] N. Danford, Dzh. Shvarts, Lineinye operatory. II. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, Mir, M., 1963

[26] D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987 | MR | Zbl

[27] M. Faierman, I. Knowles, “Minimal operators for Schrödinger-type differential expressions with discontinuous principal coefficients”, Canad. J. Math., 32:6 (1980), 1423–1437 | MR | Zbl

[28] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. I, II”, Math. Ann., 109 (1934), 465–487; 685–713 | DOI | MR | Zbl

[29] K. Friedrichs, “The identity of weak and strong extensions of differential operators”, Trans. Amer. Math. Soc., 55 (1944), 132–151 | DOI | MR | Zbl

[30] M. Gaffney, “A special Stokes's theorem for complete Riemannian manifolds”, Ann. of Math. (2), 60 (1954), 140–145 | DOI | MR | Zbl

[31] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, vyp. 4. Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatlit, M., 1961 | MR

[32] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatlit, M., 1963 | MR

[33] E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lect. Notes Math., 5, New York University, Courant Institute of Mathematical Sciences, New York, 1999 | MR

[34] G. Hellwig, Differential Operators of Mathematical Physics. An Introduction, Addison-Wesley, Reading, MA, 1967 | MR | Zbl

[35] H. Hess, R. Schrader, D. A. Uhlenbrock, “Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifold”, J. Differential Geom., 15 (1980), 27–37 | MR | Zbl

[36] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd ed., Springer-Verlag, Berlin, 1990

[37] T. Ikebe, T. Kato, “Uniqueness of self-adjoint extension of singular elliptic differential operators”, Arch. Ration. Mech. Anal., 9 (1962), 77–92 | DOI | MR | Zbl

[38] A. Iwatsuka, “Essential self-adjointness of the Schrödinger operators with magnetic fields diverging at infinity”, Publ. Res. Inst. Math. Sci., 26:5 (1990), 841–860 | DOI | MR | Zbl

[39] H. Kalf, “Self-adjointness for strongly singular potentials with $a-|x|^2$ fall-off at infinity”, Math. Z., 133 (1973), 249–255 | DOI | MR | Zbl

[40] H. Kalf, “Remarks on some Dirichlet type results for semibounded Sturm–Liouville operators”, Math. Ann., 210 (1974), 197–205 | DOI | MR | Zbl

[41] H. Kalf, “Gauss's theorem and the self-adjointness of Schrödinger operators”, Ark. Mat., 18 (1980), 19–47 | DOI | MR | Zbl

[42] H. Kalf, F. S. Rofe-Beketov, “On the essential self-adjointness of Schrödinger operators with locally integrable potentials”, Proc. Roy. Soc. Edinburgh Sect. A, 128:1 (1998), 95–106 | MR | Zbl

[43] H. Kalf, U.-W. Schmincke, J. Walter, R. Wüst, “On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials”, Lecture Notes in Math., 448, 1975, 182–226 | MR | Zbl

[44] H. Kalf, J. Walter, “Strongly singular potentials and the essential self-adjointness of singular elliptic operators in $C_0^\infty(\mathbb R^n\setminus\{0\})$”, J. Funct. Anal., 10 (1972), 114–130 | DOI | MR | Zbl

[45] H. Karcher, “Riemannian center of mass and mollifier smoothing”, Comm. Pure Appl. Math., 30 (1977), 509–541 | DOI | MR | Zbl

[46] T. Kato, “Fundamental properties of Hamiltonian operators of Schrödinger type”, Trans. Amer. Math. Soc., 70 (1951), 195–211 | DOI | MR | Zbl

[47] T. Kato, “Schrödinger operators with singular potentials”, Israel J. Math., 13 (1972), 135–148 | DOI | MR

[48] T. Kato, “A remark to the preceding paper by Chernoff”, J. Funct. Anal., 12 (1973), 415–417 | DOI | MR | Zbl

[49] T. Kato, “A second look at the essential self-adjointness of the Schrödinger operators”, Physical Reality and Mathematical Description, Reidel, Dordrecht, 1974, 193–201 | MR

[50] I. Knowles, “On the existence of minimal operators for Schrödinger-type differential expressions”, Math. Ann., 233:3 (1978), 221–227 | DOI | MR | Zbl

[51] S. A. Laptev, “O zamykanii v metrike obobschennogo integrala Dirikhle”, Differents. uravneniya, 7:4 (1971), 727–736 | MR | Zbl

[52] H. Leinfelder, C. Simader, “Schrödinger operators with singular magnetic vector potentials”, Math. Z., 176 (1981), 1–19 | DOI | MR | Zbl

[53] M. Lesch, “Essential self-adjointness of symmetric linear relations associated to first order systems”, Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre), Exp. No X, Univ. Nantes, Nantes, 2000 | MR | Zbl

[54] B. M. Levitan, “Ob odnoi teoreme Tichmarsha i Siersa”, UMN, 16:4 (1961), 175–178 | MR | Zbl

[55] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR | Zbl

[56] V. G. Mazya, “O zamykanii v metrike obobschennogo integrala Dirikhle”, Zap. nauchn. semin. LOMI, 5 (1967), 192–195 | MR | Zbl

[57] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[58] I. M. Oleinik, “O suschestvennoi samosopryazhennosti operatora Shrëdingera na polnykh rimanovykh mnogoobraziyakh”, Matem. zametki, 54:3 (1993), 89–97 | MR | Zbl

[59] I. M. Oleinik, “O svyazi klassicheskoi i kvantovomekhanicheskoi polnoty potentsiala na beskonechnosti na polnom rimanovom mnogoobrazii”, Matem. zametki, 55:4 (1994), 65–73 | MR | Zbl

[60] I. Oleinik, “On the essential self-adjointness of the general second order elliptic operators”, Proc. Amer. Math. Soc., 127:3 (1999), 889–900 | DOI | MR | Zbl

[61] Yu. B. Orochko, “Metod giperbolicheskogo uravneniya v teorii operatorov tipa Shrëdingera s lokalno integriruemym potentsialom”, UMN, 43:2 (1988), 43–86 | MR | Zbl

[62] M. A. Perelmuter, Yu. A. Semenov, “O suschestvennoi samosopryazhennosti ellipticheskikh operatorov vtorogo poryadka s izmerimymi koeffitsientami”, Ukr. matem. zhurn., 37:2 (1985), 191–197 | MR | Zbl

[63] A. Ya. Povzner, “O razlozhenii proizvolnykh funktsii po sobstvennym funktsiyam operatora $\Delta u+cu$”, Matem. sb., 32(74):1 (1953), 109–156 | MR | Zbl

[64] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 1: Funktsionalnyi analiz. T. 2: Analiz Fure, samosopryazhennost, Mir, M., 1977, 1978

[65] F. Rellich, “Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung”, Math. Ann., 122 (1951), 343–368 | DOI | MR | Zbl

[66] F. Rellich, “Halbbeschränkte Differentialoperatoren höherer Ordnung”, Proceedings of the International Congress of Mathematicians, vol. III (Amsterdam, 1954), North-Holland, Amsterdam, 1956, 243–250 | MR

[67] J. Roe, “An index theorem on open manifolds. I, II”, J. Differential Geom., 27:1 (1988), 87–113, 115–136 | MR | Zbl

[68] F. S. Rofe-Beketov, “Usloviya samosopryazhennosti operatora Shrëdingera”, Matem. zametki, 8:6 (1970), 741–751 | MR | Zbl

[69] F. S. Rofe-Beketov, “Samosopryazhennost ellipticheskikh operatorov vysshikh poryadkov i otsenki energeticheskogo tipa vo vsem $\mathbb R^n$”, Teoriya funktsii, funkts. anal. i ikh pril., 56 (1991), 35–46 | MR

[70] F. S. Rofe-Beketov, Kh. Kalf, “O suschestvennoi samosopryazhennosti nepoluogranichennykh operatorov Shrëdingera”, Matem. issledovaniya, 7:1 (1997), 53–58 | MR | Zbl

[71] M. Schechter, “On the invariance of the essential spectrum of an arbitrary operator. II”, Ricerche Mat., 16 (1967), 3–26 | MR | Zbl

[72] M. Schechter, Spectra of Partial Differential Operators, 2nd ed., North-Holland Ser. Appl. Math. Mech., 14, North-Holland, Amsterdam, 1986 | MR | Zbl

[73] D. B. Sears, “Note on the uniqueness of Green's functions associated with certain differential equations”, Canad. J. Math., 2 (1950), 314–325 | MR | Zbl

[74] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[75] M. A. Shubin, “Spectral theory of elliptic operators on non-compact manifolds”, Astérisque, 207 (1992), 35–108 | MR | Zbl

[76] M. A. Shubin, “Semiclassical asymptotics on covering manifolds and Morse inequalities”, Geom. Funct. Anal., 6:2 (1996), 370–409 | DOI | MR | Zbl

[77] M. A. Shubin, “Classical and quantum completeness for Schrödinger operators on non-compact manifolds”, Geometric Aspects of Partial Differential Equations, Proceedings of a symposium (Roskilde, 1998), Contemp. Math., 242, Amer. Math. Soc., Providence, RI, 1999, 257–269 | MR | Zbl

[78] M. A. Shubin, “Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds”, Sémin. Équ. Dériv. Partielles, Exp. No XV, 1999 | MR

[79] M. A. Shubin, “Essential self-adjointness for semibounded magnetic Schrödinger operators on non-compact manifolds”, J. Funct. Analysis, 186:1 (2001), 92–116 | DOI | MR | Zbl

[80] C. Simader, “Essential self-adjointness of Schrödinger operators bounded from below”, Math. Z., 159 (1978), 47–50 | DOI | MR | Zbl

[81] B. Simon, “Essential self-adjointness of Schrödinger operators with positive potentials”, Math. Ann., 201 (1973), 211–220 | DOI | MR | Zbl

[82] B. Simon, “Schrödinger semigroups”, Bull. Amer. Math. Soc. (N.S.), 7:3 (1982), 447–526 ; Erratum: Bull. Amer. Math. Soc. (N.S.), 11:2 (1984), 426 | DOI | MR | Zbl | DOI | MR

[83] B. Simon, “Schrödinger operators in the twentieth century”, J. Math. Phys., 41:6 (2000), 3523–3555 | DOI | MR | Zbl

[84] F. Stummel, “Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen”, Math. Ann., 132 (1956), 150–176 | DOI | MR | Zbl

[85] E. C. Titchmarsh, “On the uniqueness of the Green's function associated with a second-order differential equation”, Canad. J. Math., 1 (1949), 191–198 | MR | Zbl

[86] E. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. II, IL, M., 1961

[87] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd ed., Barth, Heidelberg, 1995 | MR | Zbl

[88] N. N. Uraltseva, “Nesamosopryazhennost v $L_2(\mathbb R^n)$ ellipticheskogo operatora s bystro rastuschimi koeffitsientami”, Zap. nauchn. semin. LOMI, 14 (1969), 288–294 | MR

[89] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[90] H. Weyl, “Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen”, Nachr. Kgl. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1909, 37–63 | Zbl

[91] H. Weyl, “Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen, 2. Note”, Nachr. Kgl. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1910, 442–467 | Zbl

[92] H. Weyl, “Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen”, Math. Ann., 68 (1910), 220–269 | DOI | MR | Zbl

[93] E. Wienholtz, “Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus”, Math. Ann., 135 (1958), 50–80 | DOI | MR | Zbl