Essential self-adjointness of Schr\"odinger-type operators on manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 641-692

Voir la notice de l'article provenant de la source Math-Net.Ru

Several conditions are obtained ensuring the essential self-adjointness of a Schrödinger-type operator $H_V=D^*D+V$, where $D$ is a first-order elliptic differential operator acting on the space of sections of a Hermitian vector bundle $E$ over a manifold $M$ with positive smooth measure $d\mu$ and $V$ is a Hermitian bundle endomorphism. These conditions are expressed in terms of completeness of certain metrics on $M$ naturally associated with $H_V$. The results generalize theorems of Titchmarsh, Sears, Rofe-Beketov, Oleinik, Shubin, and Lesch. It is not assumed a priori that $M$ is endowed with a complete Riemannian metric. This enables one to treat, for instance, operators acting on bounded domains in $\mathbb R^n$ with Lebesgue measure. Singular potentials $V$ are also admitted. In particular, a new self-adjointness condition is obtained for a Schrödinger operator on $\mathbb R^n$ whose potential has a Coulomb-type singularity and can tend to $-\infty$ at infinity. For the special case in which the principal symbol of $D^*D$ is scalar, more precise results are established for operators with singular potentials. The proofs of these facts are based on a refined Kato-type inequality modifying and improving a result of Hess, Schrader, and Uhlenbrock.
@article{RM_2002_57_4_a0,
     author = {M. Braverman and O. Milatovic and M. A. Shubin},
     title = {Essential self-adjointness of {Schr\"odinger-type} operators on manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {641--692},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/}
}
TY  - JOUR
AU  - M. Braverman
AU  - O. Milatovic
AU  - M. A. Shubin
TI  - Essential self-adjointness of Schr\"odinger-type operators on manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 641
EP  - 692
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/
LA  - en
ID  - RM_2002_57_4_a0
ER  - 
%0 Journal Article
%A M. Braverman
%A O. Milatovic
%A M. A. Shubin
%T Essential self-adjointness of Schr\"odinger-type operators on manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 641-692
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/
%G en
%F RM_2002_57_4_a0
M. Braverman; O. Milatovic; M. A. Shubin. Essential self-adjointness of Schr\"odinger-type operators on manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 641-692. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a0/