Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 3, pp. 581-583
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2002_57_3_a5,
author = {M. N. Bogacheva and I. V. Pavlov},
title = {Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {581--583},
year = {2002},
volume = {57},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_3_a5/}
}
TY - JOUR AU - M. N. Bogacheva AU - I. V. Pavlov TI - Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 581 EP - 583 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2002_57_3_a5/ LA - en ID - RM_2002_57_3_a5 ER -
%0 Journal Article %A M. N. Bogacheva %A I. V. Pavlov %T Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 581-583 %V 57 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2002_57_3_a5/ %G en %F RM_2002_57_3_a5
M. N. Bogacheva; I. V. Pavlov. Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 3, pp. 581-583. http://geodesic.mathdoc.fr/item/RM_2002_57_3_a5/
[1] M. S. Taqqu, W. Willinger, Adv. Appl. Probab., 19 (1987), 1–25 | DOI | MR | Zbl
[2] A. V. Melnikov, K. M. Feoktistov, Obozrenie prikl. promyshl. matem., 8:1 (2001), 28–40 | MR | Zbl
[3] K. M. Feoktistov, UMN, 53:6 (1998), 165–166 | MR | Zbl
[4] M. N. Bogacheva, I. V. Pavlov, International Conference “Stochastic Analysis and Related Topics”, Abstracts of communications, St. Petersburg, 2001, 13–14
[5] M. N. Bogachëva, I. V. Pavlov, Obozrenie prikl. promyshl. matem., 8:1 (2001), 107–108 | MR