Cyclic graphs and Apéry's theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 3, pp. 535-571 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of results about the behaviour of Hermite–Padé approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apéry's result about the irrationality of the value $\zeta(3)$ of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite–Padé problem leads to Apéry's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found.
@article{RM_2002_57_3_a2,
     author = {V. N. Sorokin},
     title = {Cyclic graphs and {Ap\'ery's} theorem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {535--571},
     year = {2002},
     volume = {57},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_3_a2/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Cyclic graphs and Apéry's theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 535
EP  - 571
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_3_a2/
LA  - en
ID  - RM_2002_57_3_a2
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Cyclic graphs and Apéry's theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 535-571
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2002_57_3_a2/
%G en
%F RM_2002_57_3_a2
V. N. Sorokin. Cyclic graphs and Apéry's theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 3, pp. 535-571. http://geodesic.mathdoc.fr/item/RM_2002_57_3_a2/

[1] A. A. Gonchar, E. A. Rakhmanov, “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, MIAN, 157, 1981, 31–48 | MR | Zbl

[2] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167):1 (1984), 117–127 | MR

[3] A. A. Gonchar, E. A. Rakhmanov, “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4 (1985), 155–156 | MR | Zbl

[4] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii naliticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | MR | Zbl

[5] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | MR | Zbl

[6] C. Hermite, “Sur la fonction exponentielle”, C. R. Acad. Sci. Paris, 77 (1873), 18–24

[7] K. Mahler, “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR | Zbl

[8] K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus. I, II”, J. Reine Angew. Math., 166 (1931–1932), 118–136, 137–150 | Zbl

[9] K. Mahler, “On the approximation of logarithms of algebraic numbers”, Philos. Trans. Roy. Soc. London Ser. A, 245 (1953), 371–398 | DOI | MR | Zbl

[10] E. M. Nikishin, “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113(155):4 (1980), 499–519 | MR | Zbl

[11] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[12] V. N. Sorokin, J. Van Iseghem, “Algebraic aspects of matrix orthogonality for vector polynomials”, J. Approx. Theory, 90:1 (1997), 97–116 | DOI | MR | Zbl

[13] V. N. Sorokin, J. Van Iseghem, “Matrix continued fractions”, J. Approx. Theory, 96:2 (1999), 237–257 | DOI | MR | Zbl

[14] M. A. Angelesco, “Sur l'approximation simultanée de plusieures intégrales definies”, C. R. Acad. Sci. Paris, 167 (1918), 629–631

[15] M. A. Angelesco, “Sur deux extensions des fractions continues algébriques”, C. R. Acad. Sci. Paris, 168 (1919), 262 | Zbl

[16] E. M. Nikishin, “O sisteme markovskikh funktsii”, Vestn. MGU. Ser. 1. Matem., mekh., 1979, no. 4, 60–63 | MR | Zbl

[17] V. A. Kalyagin, “Ob odnom klasse polinomov, opredelyaemykh dvumya sootnosheniyami ortogonalnosti”, Matem. sb., 110(152):4 (1979), 609–627 | MR

[18] A. I. Aptekarev, “Asimptotika mnogochlenov sovmestnoi ortogonalnosti v sluchae Anzhelesko”, Matem. sb., 136:1 (1988), 56–84 | MR

[19] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[20] A. I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Padé polynomials”, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, eds. A. A. Gonchar et al., Springer-Verlag, New York, 1992, 127–167 | MR | Zbl

[21] S. P. Suetin, “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl

[22] E. M. Nikishin, “Ob asimptotike lineinykh form dlya sovmestnykh approksimatsii Pade”, Izv. vuzov. Matem., 1986, no. 2, 33–41 | MR | Zbl

[23] K. Driver, H. Stahl, “Simultaneous rational approximants to Nikishin systems”, Acta Sci. Math., 60:1–2 (1995), 245–263 ; 61:1–4, 261–284 | MR | Zbl | MR | Zbl

[24] V. N. Sorokin, “Approksimatsii Ermita–Pade polilogarifmov”, Izv. vuzov. Matem., 1994, no. 5, 49–59 | MR | Zbl

[25] A. I. Aptekarev, “Silnaya asimptotika mnogochlenov sovmestnoi ortogonalnosti dlya sistem Nikishina”, Matem. sb., 190:5 (1999), 3–44 | MR | Zbl

[26] J. Bustamante, “Asymptotics for Angelesco–Nikishin systems”, J. Approx. Theory, 85 (1996), 43–68 | DOI | MR | Zbl

[27] Zh. Bustamante, L. G. Lagomasino, “Approksimatsii Ermita–Pade dlya sistem Nikishina analiticheskikh funktsii”, Matem. sb., 183:11 (1992), 117–138 | MR | Zbl

[28] M. Hata, “The irrationality of $\log(1+1/q)\log(1-1/q)$”, Trans. Amer. Math. Soc., 350:6 (1998), 2311–2327 | DOI | MR | Zbl

[29] R. Apery, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61 (1979), 11–13 | Zbl

[30] A. van der Poorten, “A proof that Euler missed...Apery's proof of the irrationality of $\zeta(3)$: An informal report”, Math. Intelligencer, 1:4 (1979), 195–203 | DOI | MR | Zbl

[31] H. Cohen, “Démonstration de l'irrationalité de $\zeta(3)$ (d'après R. Apery)”, Séminaire de Théorie des Nombres. Grenoble, 1978

[32] E. Reyssat, “Irrationalité de $\zeta(3)$, selon Apery”, Séminaire de Théorie des Nombres. Delange–Pisot–Poitou, 1978/79. Fasc. 1, exp. 6, 1980 | MR

[33] T. Rivoal, “La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs”, C. R. Acad. Sci. Paris Sér. I Math., 331:4 (2000), 267–270 ; math.NT/0008051 | MR | Zbl

[34] V. V. Zudilin, “Ob irratsionalnosti znachenii dzeta-funktsii v nechetnykh tochkakh”, UMN, 56:2 (2001), 215–216 | MR | Zbl

[35] F. Beukers, “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl

[36] F. Beukers, “Padé approximations in number theory”, Lecture Notes in Math., 888, 1981, 90–99 | MR | Zbl

[37] V. N. Sorokin, “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost $\zeta(3)$”, UMN, 49:2 (1994), 167–168 | MR | Zbl

[38] V. N. Sorokin, “O teoreme Aperi”, Vestn. MGU. Ser. 1. Matem., mekh., 1998, no. 3, 48–53 | MR | Zbl

[39] Yu. V. Nesterenko, “Nekotorye zamechaniya o $\zeta(3)$”, Matem. zametki, 59:6 (1996), 865–880 | MR | Zbl

[40] M. Prévost, “A new proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ using Padé approximants”, J. Comput. Appl. Math., 67:2 (1996), 219–235 | DOI | MR | Zbl

[41] L. A. Gutnik, “Ob irratsionalnosti nekotorykh velichin, soderzhaschikh $\zeta(3)$”, Acta Arith., 42:3 (1983), 255–264 | MR | Zbl

[42] V. N. Sorokin, “O lineinoi nezavisimosti logarifmov nekotorykh ratsionalnykh chisel”, Matem. zametki, 46:3 (1989), 74–79 | MR | Zbl

[43] V. N. Sorokin, “O mere transtsendentnosti chisla $\pi^2$”, Matem. sb., 187:12 (1996), 87–120 | MR | Zbl

[44] V. N. Sorokin, “O lineinoi nezavisimosti znachenii obobschennykh polilogarifmov”, Matem. sb., 192:8 (2001), 139–154 | MR | Zbl

[45] V. N. Sorokin, “O sovmestnykh dvukhtochechnykh approksimatsiyakh Pade markovskikh funktsii”, Ukr. matem. zhurn., 43:4 (1991), 584–588 | MR

[46] M. Hata, “On the linear independence of the values of polylogarithmic functions”, J. Math. Pures Appl., 69:2 (1990), 133–173 | MR | Zbl

[47] M. Hata, “A new irrationality measure for $\zeta(3)$”, Acta Arith., 92:1 (2000), 47–57 | MR | Zbl

[48] A. Markoff, “Sur les séries $\sum\frac1{k^2}$, $\sum\frac1{k^3}$. Extrait d'une lettre adressée à M. Hermite”, C. R. Acad. Sci. Paris, 100 (1889), 934–935

[49] A. A. Markov, “Mémoire sur la transformation des séries peu convergentes en séries très convergentes”, Mem. Acad. Sci. Petersbourg. (7), 37:9 (1890), 1–18

[50] A. A. Markov, Ischislenie konechnykh raznostei, SPb., 1889–1890

[51] H. Ogigova, “Les lettres de Ch. Hermite à A. Markoff, 1885–1899”, Rev. Hist. Sci. Appl., 20 (1967), 1–32 | MR | Zbl