Ramified coverings of the two-dimensional sphere and the intersection theory in spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 3, pp. 463-533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1891 A. Hurwitz considered the problem of enumerating the ramified coverings of the two-dimensional sphere by two-dimensional surfaces with fixed types of branching over the branch points. In the original setting the problem was reformulated in terms of characters of the symmetric group. Recently it turned out that the problem is also very closely connected with diverse physical theories, with singularity theory, and with the geometry of the moduli spaces of complex curves. The discovery of these relationships has led to an enlargement of the class of cases in which the enumeration yields explicit formulae, and a clarification of the nature of the classical results. This survey is devoted to a description of the contemporary state of this thriving topic and is intended for experts in topology, the theory of Riemann surfaces, combinatorics, singularity theory, and mathematical physics. It can also serve as a guide to the modern literature on coverings of the sphere.
@article{RM_2002_57_3_a1,
     author = {S. K. Lando},
     title = {Ramified coverings of the two-dimensional sphere and the intersection theory in spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {463--533},
     year = {2002},
     volume = {57},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_3_a1/}
}
TY  - JOUR
AU  - S. K. Lando
TI  - Ramified coverings of the two-dimensional sphere and the intersection theory in spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 463
EP  - 533
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_3_a1/
LA  - en
ID  - RM_2002_57_3_a1
ER  - 
%0 Journal Article
%A S. K. Lando
%T Ramified coverings of the two-dimensional sphere and the intersection theory in spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 463-533
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2002_57_3_a1/
%G en
%F RM_2002_57_3_a1
S. K. Lando. Ramified coverings of the two-dimensional sphere and the intersection theory in spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 3, pp. 463-533. http://geodesic.mathdoc.fr/item/RM_2002_57_3_a1/

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of Algebraic Curves, Grundlehren Math. Wiss., 267, Springer-Verlag, New York, 1985 | MR | Zbl

[2] V. I. Arnold, “Topologicheskaya klassifikatsiya trigonometricheskikh mnogochlenov i kombinatorika grafov s ravnym chislom vershin i reber”, Funkts. analiz i ego pril., 30:1 (1996), 1–17 | MR | Zbl

[3] V. I. Arnold, “Kriticheskie tochki funktsii i klassifikatsiya kaustik”, UMN, 29:3 (1974), 243–244 | MR

[4] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, 1, Nauka, M., 1982 | MR

[5] C. Baines, “The multiplicity of the Lyashko–Looijenga mapping on the discriminant strata of even and odd polynomials”, Geometry and Topology of Caustics, Proceedings of the Banach Center symposium (Warsaw, 1998), Banach Center Publ., 50, ed. S. Janeczko et al., Polish Acad. Sci., Warsaw, 1999, 19–40 | MR | Zbl

[6] K. Behrend, Yu. Manin, “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85:1 (1996), 1–60 | DOI | MR | Zbl

[7] I. Berstein, A. L. Edmonds, “On the classification of generic branched coverings of surfaces”, Illinois J. Math., 28:1 (1984), 64–82 | MR | Zbl

[8] D. Bouya, A. K. Zvonkin, Topological classification of complex polynomials: New experimental results, http://dept-info.labri.u-bordeaux.fr/<nobr>$\sim$</nobr>zvonkin

[9] A. Clebsch, “Zur Theorie der Riemann'schen Flächen”, Math. Ann., 6 (1873), 216–230 | DOI | MR

[10] M. Crescimanno, W. Taylor, “Large $N$ phases of chiral QCD$_2$”, Nuclear Phys. B, 437:1 (1995), 3–24 | DOI | MR | Zbl

[11] I. Dolgachev, D. Ortland, Point Sets in Projective Spaces and Theta Functions, Astérisque, 165, Soc. Math. France, Paris, 1988 | MR | Zbl

[12] B. A. Dubrovin, “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, 1996, 120–348 | MR | Zbl

[13] A. L. Edmonds, R. S. Kulkarni, R. E. Stong, “Realizability of branched coverings of surfaces”, Trans. Amer. Math. Soc., 282 (1984), 773–790 | DOI | MR | Zbl

[14] T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, “On Hurwitz numbers and Hodge integrals”, C. R. Acad. Sci. Paris Sér. I Math., 328:12 (1999), 1175–1180 | MR | Zbl

[15] T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146 (2001), 297–327 | DOI | MR | Zbl

[16] M. El Marraki, N. Hanusse, J. Zipperer, A. Zvonkin, Cacti, Braids and Complex Polynomials, Sém. Lotharingien Combin, 37, 1997 ; http://cartan.u-strasbg.fr/<nobr>$\sim$</nobr>slc | MR

[17] C. Faber, R. Pandharipande, “Hodge integrlas and Gromov–Witten theory”, Invent. Math., 139:1 (2000), 173–199 ; math.AG/9810173 | MR | Zbl

[18] C. Faber, R. Pandharipande, Hodge integrals, partition matrices, and the $\lambda_g$-conjecture, math.AG/9908052 | MR

[19] C. Fantechi, R. Pandharipande, Stable maps and branch divisors, math.AG/9905104

[20] W. Fulton, Intersection Theory, 2nd edition, Springer-Verlag, Berlin, 1998 ; V. Fulton, Teoriya peresechenii, Mir, M., 1997 | MR

[21] V. V. Goryunov, “Functions on space curves”, J. London Math. Soc. (2), 61:3 (2000), 807–822 | DOI | MR | Zbl

[22] V. V. Goryunov, S. K. Lando, “On enumeration of meromorphic functions on the line”, The Arnoldfest: Proceedings of a conference in honour of V. I. Arnold for his 60th birthday (Toronto, 1997), Fields Inst. Comm., 24, eds. E. Bierstone et al., Amer. Math. Soc., Providence, RI, 1999, 209–223 | MR | Zbl

[23] I. P. Goulden, D. M. Jackson, “Transitive factorisations into transpositions and holomorphic mappings on the sphere”, Proc. Amer. Math. Soc., 125:1 (1997), 51–60 | DOI | MR | Zbl

[24] I. P. Goulden, D. M. Jackson, “The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group”, European J. Combin., 13:5 (1992), 357–365 | DOI | MR | Zbl

[25] I. P. Goulden, D. M. Jackson, “A proof of a conjecture for the number of ramified coverings of the sphere by the torus”, J. Combin. Theory Ser. A, 88:2 (1999), 246–258 | DOI | MR | Zbl

[26] I. P. Goulden, D. M. Jackson, A. Vainshtein, “The number of ramified coverings of the sphere by the torus and surfaces of higher genera”, Ann. Combin., 4:1 (2000), 27–46 | DOI | MR | Zbl

[27] I. P. Goulden, D. M. Jackson, R. Vakil, “The Gromov–Witten potential of a point, Hurwitz numbers, and Hodge integrals”, Proc. London Math. Soc. (3), 83:3 (2001), 563–581 | DOI | MR | Zbl

[28] A. Goupil, G. Schaeffer, “Factoring $n$-cycles and counting maps of given genus”, European J. Combin., 19:7 (1998), 819–834 | DOI | MR | Zbl

[29] T. Graber, R. Pandharipande, “Localization of virtual classes”, Invent. Math., 135:2 (1999), 487–518 | DOI | MR | Zbl

[30] T. Graber, R. Vakil, Hodge integrals and Hurwitz numbers via virtual localization, math.AG/0003028 | MR

[31] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[32] D. Gross, W. Taylor, “Two-dimensional QCD is a string theory”, Nuclear Phys. B, 400:1–3 (1993), 181–208 | DOI | MR | Zbl

[33] J. Harris, I. Morrison, Moduli of Curves, Graduate Texts in Mathematics, 187, Springer-Verlag, New York, 1998 | MR | Zbl

[34] J. Harris, D. Mumford, “On the Codaira dimension of the moduli space of curves”, Invent. Math., 67 (1982), 23–88 | DOI | MR

[35] A. Hurwitz, “Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR

[36] A. Hurwitz, “Über die Anzahl der Riemann'schen Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 55 (1902), 53–66 | DOI | MR | Zbl

[37] D. M. Jackson, “Some combinatorial problems associated with products of conjugacy classes of the symmetric group”, J. Combin. Theory Ser. A, 49:2 (1988), 363–369 | DOI | MR | Zbl

[38] D. M. Jackson, “Counting cycles in permutations by group characters, with an application to a topological problem”, Trans. Amer. Math. Soc., 299:2 (1987), 785–801 | DOI | MR | Zbl

[39] A. G. Khovanskij, S. Zdravkovska, “Branched covers of $S^2$ and braid groups”, J. Knot Theory Ramifications, 5:1 (1996), 55–75 | DOI | MR | Zbl

[40] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[41] M. Kontsevich, “Enumeration of rational curves via torus actions”, The Moduli Space of Curves, Progr. Math., 129, eds. R. Dijkgraaf et al., Birkhäuser, Basel, 1995, 335–368 | MR | Zbl

[42] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl

[43] S. K. Lando, D. Zvonkin, “O kratnostyakh otobrazheniya Lyashko–Loiengi na stratakh diskriminanta”, Funkts. analiz i ego pril., 33:3 (1999), 21–34 | MR | Zbl

[44] A.-M. Li, G. Zhao, Q. Zheng, “The number of ramified coverings of a Riemann surface by Riemann surface”, Comm. Math. Phys., 213:3 (2000), 685–696 | DOI | MR | Zbl

[45] E. Looijenga, “The complement of the bifurcation variety of a simple singularity”, Invent. Math., 23 (1974), 105–116 | DOI | MR | Zbl

[46] J. Luroth, “Note über Verzweigungsschnitte und Querschnitte in einer Riemann'sche Fläche”, Math. Ann., 4 (1871), 181–184 | DOI | MR

[47] O. V. Lyashko, “Geometriya bifurkatsionnykh diagramm”, Itogi nauki i tekhniki. Sovr. probl. matem, 22, 1983, 94–129 | MR

[48] Yu. I. Manin, Frobenius manifolds, Quantum Cohomology, and Moduli Spaces, AMS Colloquium Publications, 47, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[49] A. D. Mednykh, “Opredelenie chisla neosobykh nakrytii kompaktnoi rimanovoi poverkhnosti”, Dokl. AN SSSR, 239:2 (1978), 269–271 | MR | Zbl

[50] A. D. Mednykh, “Neekvivalentnye nakrytiya rimanovykh poverkhnostei s zadannym tipom vetvleniya”, Sib. matem. zhurn., 25 (1984), 120–142 | MR | Zbl

[51] A. D. Mednykh, “Branched coverings of Riemann surfaces whose branch orders coincide with the multiplicity”, Comm. Algebra, 18:5 (1990), 1517–1533 | DOI | MR | Zbl

[52] A. Migdal, “Rekursionnye uravneniya v kalibrovochnykh teoriyakh polya”, ZhETF, 69:3 (1975), 810–822

[53] J. Mycielski, “Polynomials with preassigned values at their branching points”, Amer. Math. Monthly, 77 (1970), 853–855 | DOI | MR | Zbl

[54] S. M. Natanzon, “Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves”, Selecta Math. Soviet, 12:3 (1993), 251–291 | MR

[55] S. M. Natanzon, “Spaces of meromorphic functions on Riemann surfaces”, Amer. Math. Soc. Transl. Ser. 2, 180 (1997), 175–180 | MR | Zbl

[56] S. Natanzon, V. Turaev, “A compactification of the Hurwitz space”, Topology, 38:4 (1999), 889–914 | DOI | MR | Zbl

[57] A. Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7:4 (2000), 447–453 | MR | Zbl

[58] A. Okounkov, R. Pandharipande, Gromov–Witten theory, Hurwitz numbers, and matrix models. I, math.AG/0101147

[59] A. N. Protopopov, “Gomeomorfizmy razvetvlennykh nakrytii dvumernoi sfery”, Dokl. AN SSSR, 290:4 (1986), 792–795 | MR

[60] G. B. Shabat, A. K. Zvonkin, “Plane trees and algebraic numbers”, Contemp. Math., 178 (1994), 233–275 | MR | Zbl

[61] B. Shapiro, M. Shapiro, A. Vainshtein, “Ramified coverings of $S^2$ with one degenerate branching point and enumeration of edge-ordered graphs”, Amer. Math. Soc. Transl. Ser. 2, 180 (1997), 219–227 | MR | Zbl

[62] V. Strehl, “Minimal transitive products of transpositions – the reconstruction of a proof by A. Hurwitz”, Sém. Lotharingien Combin., 36 (1996), Art. S37c, 12 p. | MR

[63] R. Thom, “L'équivalence d'une fonction différentiable et d'un polynôme”, Topology, 3. Suppl. 2 (1965), 297–307 | DOI | MR | Zbl

[64] R. Vakil, “Genus 0 and 1 Hurwitz numbers: Recursions, formulas, and graph-theoretic interpretations”, Trans. Amer. Math. Soc., 353:10 (2001), 4025–4038 | DOI | MR | Zbl

[65] E. B. Vinberg, Lineinye predstavleniya grupp, Nauka, M., 1985 | MR

[66] B. Wajnryb, “Orbits of Hurwitz action for coverings of a sphere with two special fibers”, Indag. Math. (N.S.), 7:4 (1996), 549–558 | DOI | MR | Zbl

[67] H. Weyl, “Über das Hurwitzsche Problem der Bestimmung der Anzahl Riemannscher Flächen von gegebener Verzweigungsart”, Comment. Math. Helv., 3 (1931), 103–113 | DOI | MR | Zbl

[68] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, J. Differential Geom., 1 (1991), 243–310 | MR

[69] S. Zdravkovska, “Topologicheskaya klassifikatsiya polinomialnykh otobrazhenii”, UMN, 25:4 (1970), 179–180 | MR | Zbl

[70] D. Zvonkine, “Multiplicities of the Lyashko–Looijenga map on its strata”, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1349–1353 | MR | Zbl

[71] D. Zvonkine, “Transversal multiplicities of the Lyashko–Looijenga map”, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 589–594 | MR | Zbl