@article{RM_2002_57_3_a0,
author = {V. A. Zorich},
title = {Quasi-conformal maps and the asymptotic geometry of manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {437--462},
year = {2002},
volume = {57},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_3_a0/}
}
V. A. Zorich. Quasi-conformal maps and the asymptotic geometry of manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 3, pp. 437-462. http://geodesic.mathdoc.fr/item/RM_2002_57_3_a0/
[1] H. Grötzsch, “Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 80 (1928), 503–507 | Zbl
[2] H. Grötzsch, “Über möglichst konforme Abbildungen von schlichten Bereichen”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 84 (1932), 114–120 | Zbl
[3] M. Lavrentieff, “Sur une méthode géométrique dans la représentation conforme”, Atti Congr. intern. mat., Bologna, 1928: Comm. sez., 3, Zanichelli, Bologna, 1930, 241–242
[4] M. A. Lavrentieff, “Sur une classe de représentations continues”, Matem. sb., 42:4 (1935), 407–424 | Zbl
[5] L. Ahlfors, “Zur Theorie der Überlagerungsflächen”, Acta Math., 65 (1935), 157–194 | DOI | MR | Zbl
[6] O. Teichmüller, “Untersuchungen über konforme und quasi-konforme Abbildungen”, Deutsche Math., 3 (1938), 621–678 | MR | Zbl
[7] O. Teichmüller, “Extremale quasikonforme Abbildungen und quadratische Differentiale”, Abh. Preuß. Akad. Wiss. Math.-Natur. Kl., 22 (1940), 1–197 | MR
[8] O. Teichmüller, “Ein Verschiebungssatz der quasi-konformen Abbildungen”, Deutsche Math., 7 (1944), 336–343 | MR | Zbl
[9] O. Teichmüller, “Veränderliche Riemannsche Flächen”, Deutsche Math., 7 (1944), 344–359 | MR | Zbl
[10] L. Alfors, L. Bers, Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, Bibl. sb. “Matematika”, IL, M., 1961
[11] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[12] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl
[13] M. A. Lavrentev, “Osnovnaya teorema teorii kvazikonformnykh otobrazhenii ploskikh oblastei”, Izv. AN SSSR, 12 (1948), 513–554 | MR | Zbl
[14] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR
[15] L. Ahlfors, L. Bers, “Riemann's mapping theorem for variable metrics”, Ann. of Math. (2), 72:2 (1960), 385–404 | DOI | MR | Zbl
[16] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[17] Dzh. Milnor, Golomorfnaya dinamika, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2000
[18] M. A. Lavrentev, “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, Dokl. AN SSSR, 20 (1938), 241–242 | Zbl
[19] A. I. Markushevich, “O nekotorykh klassakh nepreryvnykh otobrazhenii”, Dokl. AN SSSR, 28 (1940), 301–304 | MR | Zbl
[20] M. A. Kreines, “Sur une classe de fonctions de plusieurs variables”, Matem. sb., 9(51):3 (1941), 713–720 | MR | Zbl
[21] M. A. Lavrentev, “Ustoichivost v teoreme Liuvillya”, Dokl. AN SSSR, 95 (1954), 925–926 | MR | Zbl
[22] M. A. Lavrentev, “K teorii prostranstvennykh otobrazhenii”, Sib. matem. zhurn., 3:5 (1962), 710–714 | MR | Zbl
[23] M. A. Lavrentev, “K teorii otobrazhenii trekhmernykh oblastei”, Sib. matem. zhurn., 5:3 (1964), 596–602 | MR | Zbl
[24] B. V. Shabat, “Metod modulei v prostranstve”, Dokl. AN SSSR, 130 (1960), 1210–1213 | Zbl
[25] B. V. Shabat, “K teorii kvazikonformnykh otobrazhenii v prostranstve”, Dokl. AN SSSR, 132 (1960), 1045–1048 | Zbl
[26] Yu. G. Reshetnyak, “O konformnykh otobrazheniyakh v prostranstve”, Dokl. AN SSSR, 130 (1960), 1196–1198 | Zbl
[27] Yu. G. Reshetnyak, “Ob ustoichivosti v teoreme Liuvillya o konformnykh otobrazheniyakh prostranstva”, Dokl. AN SSSR, 152:2 (1963), 286–287 | MR | Zbl
[28] P. P. Belinskii, “O nepreryvnosti prostranstvennykh kvazikonformnykh otobrazhenii i o teoreme Liuvillya”, Dokl. AN SSSR, 147:5 (1962), 1003–1004 | MR | Zbl
[29] J. Väisälä, “On quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 298 (1961), 1–36 | MR
[30] J. Väisälä, “On quasiconformal mappings of a ball”, Ann. Acad. Sci. Fenn. Ser. A I Math., 304 (1961), 1–17 | MR
[31] F. W. Gehring, “Symmetrization of rings in space”, Trans. Amer. Math. Soc., 101 (1961), 499–519 | DOI | MR | Zbl
[32] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl
[33] B. Fuglede, “Extremal lenght and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[34] C. Loewner, “On the conformal capacity in space”, J. Math. Mech., 8 (1959), 411–414 | MR | Zbl
[35] E. D. Callender, “Hölder continuity of $n$-dimensional quasi-conformal mappings”, Pacific J. Math., 10 (1960), 499–515 | MR | Zbl
[36] A. Mori, “On quasi-conformality and pseudo-analyticity”, Trans. Amer. Math. Soc., 84 (1957), 56–77 | DOI | MR | Zbl
[37] A. Beurling, L. Ahlfors, “The boundary correspondence under quasiconformal mappings”, Acta Math., 96 (1956), 125–142 | DOI | MR | Zbl
[38] V. A. Zorich, “Sootvetstvie granits pri $Q$-kvazikonformnykh otobrazheniyakh shara”, Dokl. AN SSSR, 145 (1962), 1209–1212 | MR | Zbl
[39] G. D. Mostov, “Kvazikonformnye otobrazheniya i zhestkost giperbolicheskikh prostranstvennykh form”, Matematika: sb. per., 16:5 (1972), 105–157 | Zbl
[40] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Stud., 78, Princeton University Press / University of Tokyo Press, Princeton, NJ / Tokyo, 1973 | MR | Zbl
[41] B. Riman, Sochineniya, Gostekhizdat, M.–L., 1948
[42] J. Liouville, “Extension au cas de trois dimensions de la question du tracé géographique”, 6-e prilozhenie k knige: G. Monge, Application de l'analyse à la géométrie, 5-ième édition, revue, corrigée et annotée par J. Liouville, Bachelier, Paris, 1850, 609–616
[43] P. P. Belinskii, “Ustoichivost v teoreme Liuvillya o prostranstvennykh kvazikonformnykh otobrazheniyakh”, Nekotorye problemy matematiki i mekhaniki, Trudy konferentsii, posvyaschennoi 70-letiyu akademika M. A. Lavrenteva, Nauka, Leningrad, 1970, 88–102 | MR
[44] P. P. Belinskii, “O poryadke blizosti prostranstvennogo kvazikonformnogo otobrazheniya k konformnomu”, Sib. matem. zhurn., 14 (1973), 475–483 | MR | Zbl
[45] Yu. G. Reshetnyak, “Teorema Liuvillya o konformnykh otobrazheniyakh pri minimalnykh predpolozheniyakh regulyarnosti”, Sib. matem. zhurn., 8 (1967), 835–840 | MR
[46] Yu. G. Reshetnyak, Teoremy ustoichivosti v geometrii i analize, Nauka, Novosibirsk, 1982 | MR
[47] A. P. Kopylov, Ustoichivost v $C$-norme klassov otobrazhenii, Nauka, Novosibirsk, 1990 | MR
[48] S. Ulam, Nereshennye matematicheskie zadachi, Nauka, M., 1964 | Zbl
[49] J. Gevirtz, “Stability of isometries on Banach spaces”, Proc. Amer. Math. Soc., 89 (1983), 633–636 | DOI | MR | Zbl
[50] F. John, “Rotation and strain”, Comm. Pure Appl. Math., 14 (1961), 391–413 ; Collected papers, 2, ed. J. Moser, Birkhäuser, Boston, 1985 | DOI | MR | Zbl
[51] V. A. Zorich, “Printsip statiki i ustoichivost izometrii”, Kompleksnyi analiz v sovremennoi matematike, FAZIS, M., 2001, 3–17 | MR | Zbl
[52] M. A. Lavrentev, Izbrannye trudy. Matematika i Mekhanika, Nauka, M., 1990 | MR
[53] V. A. Zorich, “Granichnye svoistva odnogo klassa otobrazhenii v prostranstve”, Dokl. AN SSSR, 153 (1963), 23–26 | MR | Zbl
[54] V. A. Zorich, “Vzaimosvyaz teoremy Këbe i teorii Karateodori”, Matem. zametki, 10 (1971), 399–406 | MR | Zbl
[55] V. A. Zorich, “Klass Karateodori i prostranstvennyi analog teoremy Këbe”, Teoriya otobrazhenii, ee obobscheniya i prilozheniya, Sbornik nauchnykh trudov, Naukova dumka, Kiev, 1982, 91–101 | MR
[56] F. W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114 (1965), 1–70 | DOI | MR | Zbl
[57] V. A. Zorich, “Teorema M. A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Matem. sb., 74(116) (1967), 417–433 | MR | Zbl
[58] S. Rickman, “On the number of omitted values of entire quasiregular mappings”, J. Anal. Math., 37 (1980), 100–117 | DOI | MR | Zbl
[59] S. Rickman, “The analogue of Picard's theorem for quasiregular mappings in dimension three”, Acta Math., 154 (1985), 195–242 | DOI | MR | Zbl
[60] S. Rickman, Quasiregular Mappings, Springer-Verlag, Berlin, 1993 | MR
[61] V. A. Zorich, “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Lecture Notes in Math., 1508, 1992, 132–148 | MR | Zbl
[62] V. A. Zorich, “Dopustimyi poryadok rosta koeffitsienta kvazikonformnosti v teoreme M. A. Lavrenteva”, Dokl. AN SSSR, 181 (1968), 530–533 | MR | Zbl
[63] O. Martio, S. Rickman, J. Väisälä, “Topological and metric properties of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I Math., 488 (1971), 1–31 | MR
[64] F. John, “On quasi-isometric mappings. II”, Comm. Pure Appl. Math., 22 (1969), 41–66 | DOI | MR
[65] M. Gromov, “Hyperbolic manifolds, groups and actions”, Riemann surfaces and related topics, Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR
[66] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser, Boston, 1999, with appendices by M. Katz, P. Pansu, S. Semmes | MR | Zbl
[67] V. A. Zorich, “On Gromov's geometric version of the global homeomorphism theorem for quasiconformal mappings”, XIV Rolf Nevanlinna Colloquium, Abstracts (Helsinki, June 10–14, 1990), 36
[68] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl
[69] L. Ahlfors, Conformal invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973 | MR | Zbl
[70] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | MR | Zbl
[71] F. W. Gehring, “Extremal lenght definitions for the conformal capacity of rings in space”, Michigan Math. J., 9 (1962), 137–150 | DOI | MR | Zbl
[72] W. P. Ziemer, “Extremal lenght as a capacity”, Michigan Math. J., 17 (1970), 117–128 | DOI | MR | Zbl
[73] V. A. Zorich, V. M. Keselman, “O konformnom tipe rimanova mnogoobraziya”, Funkts. analiz i ego pril., 30:2 (1996), 40–55 | MR | Zbl
[74] V. A. Zorich, “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl
[75] L. Ahlfors, “Sur le type d'une surface de Riemann”, C. R. Acad. Sci. Paris Sér. A, 201 (1935), 30–32 | Zbl
[76] L. Ahlfors, E. Calabi, M. Morse, L. Sario, D. Spencer (Eds.), Contributions to the Theory of Riemann Surfaces, Centennial celebration of Riemann's dissertation, Ann. of Math. Stud., 30, Princeton Univ. Press, Princeton, 1953 | MR | Zbl
[77] L. Ahlfors, L. Sario, Riemann Surfaces, Princeton Math. Ser., 26, Princeton Univ. Press, Princeton, 1960 | MR
[78] J. Milnor, “A note on curvature and fundamental group”, J. Differential Geom., 2 (1968), 1–7 | MR | Zbl
[79] J. Milnor, “On deciding whether a surface is parabolic or hyperbolic”, Amer. Math. Monthly, 84:1 (1977), 43–46 | DOI | MR | Zbl
[80] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[81] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc. (N.S.), 36:2 (1999), 135–249 | DOI | MR | Zbl
[82] A. Grigor'yan, “Isoperimetric inequality and capacities on Riemannian manifolds”, Oper. Theory Adv. Appl., 109 (1999), 139–153 | MR | Zbl
[83] R. Grimaldi, P. Pansu, “Sur la croissance du volume dans une classe conforme”, J. Math. Pures Appl., 9(71):1 (1992), 1–19 | MR
[84] E. Schlesinger, “Conformal invariants and prime ends”, Amer. J. Math., 80 (1958), 83–102 | DOI | MR | Zbl
[85] M. H. Freedman, Z.-X. He, “Divergence free fields: Energy and asymptotic crossing number”, Ann. of Math. (2), 134:1 (1991), 189–229 | DOI | MR | Zbl
[86] M. H. Freedman, Z.-X. He, “Links of tori and the energy of incompressible flows”, Topology, 30:2 (1991), 283–287 | DOI | MR | Zbl
[87] V. A. Zorich, V. M. Keselman, “Izoperimetricheskoe neravenstvo na rimanovykh mnogoobraziyakh konformno-giperbolicheskogo tipa”, Funkts. analiz i ego pril., 35:2 (2001), 12–23 | MR | Zbl
[88] V. A. Zorich, V. M. Keselman, “Izoperimetricheskoe neravenstvo na subrimanovykh mnogoobraziyakh konformno-giperbolicheskogo tipa”, UMN, 55:6 (2000), 137–138 | MR | Zbl
[89] V. A. Zorich, “Ustranimaya osobennost kvazikonformnogo pogruzheniya”, UMN, 56:4 (2001), 147–148 | MR | Zbl
[90] S. Agard, A. Marden, “A removable singularity theorem for local homeomorphisms”, Indiana Univ. Math. J., 20 (1970), 455–461 | DOI | MR | Zbl
[91] V. A. Zorich, “Izolirovannaya osobennost otobrazhenii s ogranichennym iskazheniem”, Matem. sb., 81 (1970), 634–638
[92] V. A. Zorich, “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. analiz i ego pril., 34:3 (2000), 37–48 | MR | Zbl
[93] M. Ohtsuka, “On the behaviour of an analytic function about an isolated boundary point”, Nagoya Math. J., 4 (1952), 103–108 | MR | Zbl
[94] H. Royden, “The Picard theorem for Riemann surfaces”, Proc. Amer. Math. Soc., 90:4 (1984), 571–574 | DOI | MR | Zbl
[95] R. Nevanlinna, “On differentiable mappings”, Princeton Math. Ser., 24 (1960), 3–9 | MR | Zbl
[96] P. Pansu, “An isoperimetric inequality on the Heisenberg group”, Proceedings of the conference “Differential Geometry on Homogeneous Spaces” (Torino, 1983), 159–174 | MR | Zbl
[97] I. Holopainen, S. Rickman, “Quasiregular mappings, Heisenberg group, and Picard's theorem”, Proceedings of the Fourth Finnish–Polish Summer School in Complex Analysis (Jyväskylä, Finland, 1992), Ber. Univ. Jyväskylä Math. Inst., 55, ed. J. Lawrynowicz et al., Mathematisches Institut, Jyväskylä Univ., Jyväskylä, 1993, 25–35 | MR | Zbl
[98] S. K. Donaldson, D. P. Sullivan, “Quasiconformal 4-manifolds”, Acta Math., 163:3/4 (1989), 181–252 | DOI | MR | Zbl
[99] T. Iwaniec, G. Martin, “Quasiregular mappings in even dimensions”, Acta Math., 170:1 (1993), 29–81 | DOI | MR | Zbl
[100] I. V. Abramov, E. A. Roganov, “Kvazikonformnye gomotopii prosteishikh prostranstvennykh otobrazhenii”, Matem. sb., 180:10 (1989), 1347–1354 | MR | Zbl
[101] O. A. Asadchii, “K printsipu maksimuma dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Matem. zametki, 50:6 (1991), 14–23 | MR
[102] C. Carathéodory, “Untersuchungen über die Grundlagen der Thermodynamik”, Math. Ann., 67 (1909), 355–386 | DOI | MR
[103] C. Carathéodory, “Über die Bestimmung der Energie und der absoluten Temperature mit Hilfe von reversiblen Prozessen”, Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. Berlin, 1925, 39–47 | Zbl
[104] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Progr. Math., 144, ed. Bellaïche et al., Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[105] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR
[106] T. Iwaniec, “$L^p$-Theory of quasiregular mappings”, Lecture Notes in Math., 1508, 1992, 39–64 | MR | Zbl
[107] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, Oxford, 1993 | MR | Zbl
[108] J. Väisälä, “A survey of quasiregular maps in $\mathbb R^n$”, Proc. Internat. Congr. Math. (Helsinki, 1978), 2, Acad. Sci. Fennica, Helsinki, 1980, 685–691 | MR
[109] S. Rickman, “Recent advances in the theory of quasiregular maps”, Proceedings of the 19th Nordic Congress of Mathematicians (Reykjavik, 1984), 1985, 116–125 | MR | Zbl
[110] P. Pansu, “Quasiconformal mappings and manifolds of negative curvature”, Proceedings of the 17th International Taniguchi Symposium “Curvature and Topology of Riemannian Manifolds” (Katata, Japan, 1985), Lecture Notes in Math., 1201, Springer-Verlag, Berlin, 1986, 212–229 | MR
[111] F. W. Gehring, “Topics in quasiconformal mappings”, Proc. Internat. Congr. Math., vol. 1 (Berkeley, California, 1986), Amer. Math. Soc., Providence, RI, 1987, 62–80 | MR
[112] N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[113] T. Coulhon, I. Holopainen, L. Saloff-Coste, “Harnack inequality and hyperbolicity for subelliptic $p$-Laplacians with applications to Picard type theorem”, Geom. Funct. Anal., 11:6 (2001), 1139–1191 | DOI | MR | Zbl