On some problems of topological dimension theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 2, pp. 361-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to problems in dimension theory related to the works of Smirnov. New results concern the dimensions of subsets of manifolds. Under the continuum hypothesis we construct two infinite-dimensional 4-manifolds. The first is a manifold “without intermediate dimensions”, that is, every closed subset of it is either infinite-dimensional or of dimension at most four. In the second manifold the dimensions of open subsets take infinitely many values.
@article{RM_2002_57_2_a3,
     author = {V. V. Fedorchuk},
     title = {On some problems of topological dimension theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {361--398},
     year = {2002},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - On some problems of topological dimension theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 361
EP  - 398
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/
LA  - en
ID  - RM_2002_57_2_a3
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T On some problems of topological dimension theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 361-398
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/
%G en
%F RM_2002_57_2_a3
V. V. Fedorchuk. On some problems of topological dimension theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 2, pp. 361-398. http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/

[1] S. M. Ageev, S. A. Bogatyi, “O prepyatstviyakh k prodolzheniyu chastichnykh otobrazhenii”, Matem. zametki, 62:6 (1997), 803–812 | MR | Zbl

[2] P. S. Aleksandrov, “O razmernosti bikompaktnykh prostranstv”, Dokl. AN SSSR, 26 (1940), 627–630 | MR

[3] P. Alexandroff, “On the dimension of normal spaces”, Proc. Roy. Soc. London Ser. A, 189 (1947), 11–39 | DOI | MR | Zbl

[4] P. S. Aleksandrov, “Predislovie k rus. per. kn.: V. Gurevich, G. Volmen”, Teoriya razmernosti, IL, M., 1948, 5–18

[5] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[6] R. D. Anderson, “Monotone interior dimension-raising mappings”, Duke Math. J., 19 (1952), 359–366 | DOI | MR | Zbl

[7] A. V. Arkhangelskii, “O faktorizatsii otobrazhenii po vesu i razmernosti”, Dokl. AN SSSR, 174 (1967), 1243–1246 | MR

[8] R. H. Bing, “Higher-dimensional hereditarily indecomposable continua”, Trans. Amer. Math. Soc., 71:2 (1951), 267–273 | DOI | MR | Zbl

[9] S. A. Bogatyi, “O metricheskikh retraktakh”, Dokl. AN SSSR, 204:3 (1972), 522–524 | MR | Zbl

[10] S. A. Bogatyi, “Kharakteristiki topologicheskoi i ravnomernoi razmernosti v terminakh kolets nepreryvnykh funktsii”, Sib. matem. zhurn., 14:2 (1973), 289–299 | MR | Zbl

[11] L. E. J.Brouwer, “Beweis der Invarianz der Dimensionzahl”, Math. Ann., 70 (1911), 161–165 | DOI | MR | Zbl

[12] L. E. J. Brouwer, “Über den naturlichen Dimensionsbegriff”, J. Reine Angew. Math., 142 (1913), 145–152

[13] M. Brown, “Some applications of an approximation theorem for inverse limits”, Proc. Amer. Math. Soc., 11:3 (1960), 478–483 | DOI | MR | Zbl

[14] G. Cantor, “Über unendliche lineare Punktmannichfaltigkeiten”, Math. Ann., 21 (1883), 545–586 | DOI | MR

[15] E. Čech, “Sur la dimension des espaces parfaitement normaux”, Bull. Int. Acad. Tcheque Sci., 33 (1932), 38–55 | Zbl

[16] A. Ch. Chigogidze, “O beskonechnomernykh bikompaktakh”, Sib. matem. zhurn., 23 (1982), 157–164 | MR | Zbl

[17] A. Ch. Chigogidze, V. V. Fedorchuk, “On some dimensional properties of 4-manifolds”, Topology Appl., 107:1–2 (2000), 67–78 | DOI | MR | Zbl

[18] E. K. van Douwen, “Mild infinite dimensionality of $\beta X$ and $\beta X-X$ for metrizable $X$”, Topology Appl., 51:2 (1993), 93–108, (Preprint rasprostranen v 1979 g.) | DOI | MR | Zbl

[19] C. H. Dowker, “Mapping theorems for non-compact spaces”, Amer. J. Math., 69:2 (1947), 200–242 | DOI | MR | Zbl

[20] C. H. Dowker, “Inductive dimension of completely normal spaces”, Quart. J. Math. Oxford Ser. (2), 4 (1953), 267–281 | DOI | MR | Zbl

[21] C. H. Dowker, “Local dimension of normal spaces”, Quart. J. Math. Oxford, 6:22 (1955), 101–120 | DOI | MR | Zbl

[22] V. A. Dulev, “O beskonechnomernykh $n$-mnogoobraziyakh”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 5, 12–17 | MR | Zbl

[23] V. I. Egorov, “O metricheskoi razmernosti tochechnykh mnozhestv”, Dokl. AN SSSR, 112:5 (1957), 804–805 | MR | Zbl

[24] V. I. Egorov, “O metricheskoi razmernosti tochechnykh mnozhestv”, Matem. sb., 48 (1959), 227–250 | MR | Zbl

[25] V. I. Egorov, Yu. M. Smirnov, “O metricheskoi razmernosti mnozhestv”, Trudy 3-go Vsesoyuznogo matem. s'ezda, t. 4 (Moskva, 1956), Izd-vo AN SSSR, M., 1959, 72

[26] S. Eilenberg, E. Otto, “Quelques propriétés caracteristiques de la dimension”, Fund. Math., 31 (1938), 149–153 | Zbl

[27] R. Engelking, “Closed mappings on complete metric spaces”, Fund. Math., 70 (1971), 103–107 | MR | Zbl

[28] R. Engelking, Theory of dimension, finite and infinite, Sigma Ser. Pure Math., 10, Heldermann, Lemgo, 1995 | MR | Zbl

[29] V. V. Fedorchuk, “Bikompakty bez promezhutochnykh razmernostei”, Dokl. AN SSSR, 213:4 (1973), 795–797 | MR | Zbl

[30] V. V. Fedorchuk, “Perfectly normal compact space without intermediate dimensions”, Bull. Polish Acad. Sci. Math., 23:9 (1975), 975–979 | MR | Zbl

[31] V. V. Fedorchuk, “Sovmestimost nekotorykh teorem obschei topologii s aksiomami teorii mnozhestv”, Dokl. AN SSSR, 220:4 (1975), 786–788 | MR | Zbl

[32] V. V. Fedorchuk, “Vpolne zamknutye otobrazheniya i sovmestimost nekotorykh teorem obschei topologii s aksiomami teorii mnozhestv”, Matem. sb., 99:1 (1976), 3–33 | MR | Zbl

[33] V. V. Fedorchuk, “On the dimension of hereditarily normal spaces”, Proc. London Math. Soc. (3), 36:1 (1978), 163–175 | DOI | MR | Zbl

[34] V. V. Fedorchuk, “Beskonechnomernye bikompakty”, Izv. AN SSSR. Ser. matem., 42:5 (1978), 1162–1178 | MR

[35] V. V. Fedorchuk, “O razmernosti nigde ne plotnykh podmnozhestv mnogoobrazii”, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 2, 23–28 | MR

[36] V. V. Fedorchuk, “A differentiable manifold with noncoinciding dimensions”, Topology Appl., 54 (1993), 221–239 | DOI | MR | Zbl

[37] V. V. Fedorchuk, “Differentsiruemoe mnogoobrazie s nesovpadayuschimi razmernostyami pri CH”, Matem. sb., 186:1 (1995), 149–160 | MR | Zbl

[38] V. V. Fedorchuk, “O transfinitnoi i kogomologicheskoi razmernosti 4-mnogoobrazii”, Tr. MIAN, 212, 1996, 193–212 | MR | Zbl

[39] V. V. Fedorchuk, “Tozhdestvo Urysona i razmernost mnogoobrazii”, UMN, 53:5 (1998), 73–114 | MR | Zbl

[40] V. V. Fedorchuk, M. Levin, E. V. Schepin, “O brauerovskom opredelenii razmernosti”, UMN, 54:2 (1999), 193–194 | MR | Zbl

[41] V. V. Fedorchuk, J. van Mill, “Dimensiongrad for locally connected Polish spaces”, Fund. Math., 163:1 (2000), 77–82 | MR | Zbl

[42] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[43] V. V. Fedorchuk, V. V. Filippov, “Mnogoobraziya s nesovpadayuschimi induktivnymi razmernostyami”, Matem. sb., 183:9 (1992), 22–44

[44] V. V. Filippov, “O razmernosti normalnykh prostranstv”, Dokl. AN SSSR, 209:4 (1973), 805–807 | MR | Zbl

[45] N. Khadzhiivanov, “Prodolzhenie otobrazhenii v sfery i problema P. S. Aleksandrova”, Dokl. AN SSSR, 194:3 (1970), 525–527 | MR | Zbl

[46] N. Khadzhiivanov, “O prodolzhenii otobrazhenii v sfery i o schetnykh razlizheniyakh tikhonovskikh kubov”, Matem. sb., 84:1 (1971), 119–140 | MR | Zbl

[47] E. Hemmingsen, “Some theorems on dimension theory for normal Hausdorff spaces”, Duke Math. J., 13 (1946), 495–504 | DOI | MR | Zbl

[48] D. W. Henderson, “An infinite-dimensional compactum with no positive-dimensional compact subsets. A simpler construction”, Amer. J. Math., 89 (1967), 105–121 | DOI | MR | Zbl

[49] W. Hurewicz, “Über unendlich-dimensionale Punktmengen”, Proc. Roy. Acad. Amsterdam, 31 (1928), 916–922 | Zbl

[50] W. Hurewicz, K. Menger, “Dimension und Zusammenhangsstuffe”, Math. Ann., 100 (1928), 618–633 | DOI | MR | Zbl

[51] W. Hurewicz, H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, 1941 | MR | Zbl

[52] J. R. Isbell, “On finite-dimensional uniform spaces”, Pacific J. Math., 6 (1956), 107–121 | MR

[53] D. R. Isbell, “Ob induktivnoi razmernosti prostranstv blizosti”, Dokl. AN SSSR, 134:1 (1960), 36–38 | MR | Zbl

[54] J. R. Isbell, “On finite-dimensional uniform spaces. II”, Pacific J. Math., 12 (1962), 291–302 | MR | Zbl

[55] J. R. Isbell, Uniform Spaces, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl

[56] T. Iekh, Teoriya mnozhestv i metod forsinga, Mir, M., 1973

[57] R. B. Jensen, “The fine structure of the constructible hierarchy”, Ann. Math. Logic, 4 (1972), 229–308 | DOI | MR | Zbl

[58] A. V. Karasev, “Ob induktivnoi razmernosti zamknutykh podmnozhestv nekotorykh nemetrizuemykh mnogoobrazii”, Vestn. MGU. Ser. 1. Matem., mekh., 1997, no. 5, 11–14 | MR | Zbl

[59] M. Katetov, “O razmernosti metricheskikh prostranstv”, Dokl. AN SSSR, 79 (1951), 189–191 | MR | Zbl

[60] M. Katetov, “O razmernosti neseparabelnykh prostranstv I”, Czechoslovak Math. J., 2 (1952), 333–368 | MR | Zbl

[61] M. Katetov, “O sootnoshenii mezhdu metricheskoi i topologicheskoi razmernostyu”, Czechoslovak Math. J., 8 (1958), 163–166 | MR | Zbl

[62] G. Kozlowski, P. Zenor, “A differentiale, perfectly normal, nonmetrizable manifold”, Topology, Proc. Conf. (Ohio Univ., 1979), 4, no. 2, 1980, 453–461 | MR | Zbl

[63] A. B. Kurovskii, Yu. M. Smirnov, “O razmernosti Ird, opredelyaemoi s pomoschyu retraktsii”, Czechoslovak Math. J., 26:1 (1976), 30–36 | MR | Zbl

[64] H. Lebesgue, “Sur la non applicabilité de deux domaines appartenant respectivement à des espaces, de $n$ et $n+p$ dimensions”, Math. Ann., 70 (1911), 166–168 | DOI | MR

[65] H. Lebesgue, “Sur les correspondences entre les points de deux espaces”, Fund. Math., 2 (1921), 256–285 | Zbl

[66] B. T. Levshenko, “O silno-beskonechnomernykh prostranstvakh”, Vestn. MGU. Ser. 1. Matem., mekh., 1959, no. 5, 219–228 | MR

[67] B. T. Levshenko, “O beskonechnomernykh prostranstvakh”, Dokl. AN SSSR, 139 (1961), 286–289 | MR | Zbl

[68] B. T. Levshenko, “Prostranstva transfinitnoi razmernosti”, Matem. sb., 67 (1965), 225–266 | Zbl

[69] B. T. Levshenko, “Razmernost metricheskikh prostranstv i retraktsiya”, Fund. Math., 66 (1969/70), 1–5 | MR

[70] B. T. Levshenko, Yu. M. Smirnov, “Ob odnom svoistve nulmernykh metricheskikh prostranstv”, Proceedings of the Second Prague Topol. Sympos. (1966), 1967, 241–242 | Zbl

[71] J. van Mill, T. C. Przymusinski, “There is no compactification theorem for the small inductive dimension”, Topology Appl., 13 (1982), 133–136 | DOI | MR | Zbl

[72] K. Morita, “On the dimension of normal spaces. I”, Japan. J. Math., 20 (1950), 5–36 | MR | Zbl

[73] K. Morita, “On the dimension of normal spaces. II”, J. Math. Soc. Japan., 2 (1950), 16–33 | MR | Zbl

[74] K. Morita, “On dimension of product spaces”, Amer. J. Math., 75:2 (1953), 205–223 | DOI | MR | Zbl

[75] K. Nagami, “Monotone sequence of 0-dimensional subsets of metric spaces”, Proc. Japan Acad., 41 (1965), 771–772 | DOI | MR | Zbl

[76] J. Nagata, “On the countable sum of zero-dimensional spaces”, Fund. Math., 48 (1960), 1–14 | MR | Zbl

[77] J. Nagata, “On a universal $n$-dimensional set for metric spaces”, J. Reine Angew. Math., 204 (1960), 132–138 | MR | Zbl

[78] J. Nagata, “A remark on general imbedding theorems in dimension theory”, Proc. Japan Acad., 39 (1963), 197–199 | DOI | MR | Zbl

[79] G. M. Nepomnyaschii, Yu. M. Smirnov, “O retraktsii otobrazhenii”, Czechoslovak Math. J., 29:3 (1979), 366–377 | MR | Zbl

[80] V. A. Nikiforov, “Prodolzhenie selektsii k mnogoznachnomu otobrazheniyu i teorema dvoistvennosti Eilenberga–Borsuka”, Vestn. MGU. Ser. 1. Matem., mekh., 1987, no. 6, 57–59 | MR

[81] P. Nyikos, “The theory of nonmetrizable manifolds”, Handbook of Set-Theoretic Topology, Amsterdam, 1984, 633–684 | MR | Zbl

[82] A. A. Odintsov, “Zmeevidnye bikompakty i nekotorye voprosy teorii razmernosti”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 1, 59–62 | MR | Zbl

[83] A. J. Ostaszewski, “A perfectly normal countably compact scattered space which is not strongly zero-dimensional”, J. London Math. Soc. (2), 14:1 (1976), 167–177 | DOI | MR | Zbl

[84] B. A. Pasynkov, “Faktorizatsionnaya teorema dlya nezamknutykh mnozhestv”, Dokl. AN SSSR, 202 (1972), 1274–1276 | MR | Zbl

[85] B. A. Pasynkov, V. V. Fedorchuk, V. V. Filippov, “Teoriya razmernosti”, Itogi nauki i tekhniki. Alg. Topol. Geom., 17, VINITI, M., 1979, 229–306 | MR

[86] H. Poincaré, “L'espace et ses trois dimensions”, Revue de Metaph. et de Morale, 11 (1903), 407–429 | Zbl

[87] H. Poincaré, “Pourquoi l'espace à trois dimensions”, Revue de Metaph. et de Morale, 20 (1912), 483–504 | Zbl

[88] E. Pol, “A remark about Juhasz–Kunen–Rudin construction of a hereditarily separable non-Lindelöf space”, Bull. Polish Acad. Sci. Math., 24:9 (1976), 749–751 | MR | Zbl

[89] E. Pol, A remark on countable-dimensional Cech–Stone bicompactifications, Manuscript, 1979

[90] E. Pol, “A remark concerning perfectly normal spaces with distinct local and global dimension”, Topology Proc., 16 (1991), 125–132 | MR | Zbl

[91] E. Pol, R. Pol, “A hereditarily normal strongly zero-dimensional space containing subspaces of arbitrary large dimension”, General Topology and its Relations to Modern Analysis and Algebra IV, Proceedings of the Fourth Prague Topol. Symp., Part B (Prague, 1976), 1977, 357–360 | MR | Zbl

[92] E. Pol, R. Pol, “A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension and an $N$-compact space of positive dimension”, Fund. Math., 97:1 (1977), 43–50 | MR | Zbl

[93] R. Pol, “On classification of weakly infinite-dimensional compacta”, Fund. Math., 116 (1983), 169–188 | MR | Zbl

[94] M. M. Postnikov, Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[95] P. Roy, “Failure of equivalence of dimension concepts for metric spaces”, Bull. Amer. Math. Soc., 68 (1962), 609–613 | DOI | MR | Zbl

[96] P. Roy, “Nonequality of dimension for metric spaces”, Trans. Amer. Math. Soc., 134 (1968), 117–132 | DOI | MR | Zbl

[97] M. E. Rudin, “The undecidability of the existence of a perfectly normal nonmetrizable manifold”, Houston J. Math., 5 (1979), 249–252 | MR | Zbl

[98] N. V. Savinov, “Primer sovershenno normalnogo bikompakta bez promezhutochnykh razmernostei”, Vestn. MGU. Ser. 1. Matem., mekh., 1976, no. 3, 52–56 | MR | Zbl

[99] A. W. Schurle, “Compactification of strongly countable-dimensional spaces”, Trans. Amer. Math. Soc., 136 (1969), 25–36 | DOI | MR | Zbl

[100] K. A. Sitnikov, “Primer dvumernogo mnozhestva v trekhmernom prostranstve, dopuskayuschego skol ugodno malye deformatsii v odnomernyi poliedr”, Dokl. AN SSSR, 88 (1953), 21–24 | MR | Zbl

[101] K. A. Sitnikov, “Kombinatornaya topologiya nezamknutykh mnozhestv. II. Razmernost”, Matem. sb., 37 (1955), 385–434 | MR | Zbl

[102] E. G. Sklyarenko, “Bikompaktnye rasshireniya semibikompaktnykh prostranstv”, Dokl. AN SSSR, 120:6 (1958), 1200–1203 | MR | Zbl

[103] E. G. Sklyarenko, “O vlozhenii normalnykh prostranstv v bikompakty togo zhe vesa i toi zhe razmernosti”, Dokl. AN SSSR, 123 (1958), 36–39 | MR | Zbl

[104] E. G. Sklyarenko, “Neskolko zamechanii o beskonechnomernykh prostranstvakh”, Dokl. AN SSSR, 126 (1959), 1203–1206 | MR | Zbl

[105] E. G. Sklyarenko, “O razmernostnykh svoistvakh beskonechnomernykh prostranstv”, Izv. AN SSSR. Ser. matem., 23 (1959), 197–212 | MR | Zbl

[106] Yu. M. Smirnov, “Nekotorye sootnosheniya v teorii razmernosti”, Matem. sb., 29:1 (1951), 157–172 | MR | Zbl

[107] Yu. M. Smirnov, “O normalno raspolozhennykh mnozhestvakh normalnykh prostranstv”, Matem. sb., 29:1 (1951), 173–176 | MR | Zbl

[108] Yu. M. Smirnov, “O razmernosti prostranstv blizosti”, Matem. sb., 38:3 (1956), 283–302 | MR | Zbl

[109] Yu. M. Smirnov, “Geometriya beskonechnykh ravnomernykh kompleksov i $\delta$-razmernost tochechnykh mnozhestv”, Matem. sb., 40:2 (1956), 137–156 | MR | Zbl

[110] Yu. M. Smirnov, “O metricheskoi razmernosti v smysle P. S. Aleksandrova”, Izv. AN SSSR. Ser. matem., 20:5 (1956), 679–684 | MR | Zbl

[111] Yu. M. Smirnov, “Primer odnomernogo normalnogo prostranstva, ne soderzhaschegosya ni v kakom odnomernom bikompakte”, Dokl. AN SSSR, 117:6 (1957), 939–942 | MR

[112] Yu. M. Smirnov, “Primer vpolne regulyarnogo prostranstva s normalnym chekhovskim narostom, ne obladayuschego svoistvom semibikompaktnosti”, Dokl. AN SSSR, 120:6 (1958), 1204–1206 | MR | Zbl

[113] Yu. M. Smirnov, “Primer nulmernogo normalnogo prostranstva, imeyuschego beskonechnuyu razmernost v smysle pokrytii”, Dokl. AN SSSR, 123:1 (1958), 40–42 | MR | Zbl

[114] Yu. M. Smirnov, “Teorema P. S. Aleksandrova o suschestvennykh otobrazheniyakh”, Vestn. MGU. Ser. 1. Matem., mekh., 1959, no. 5, 43–48 | MR

[115] Yu. M. Smirnov, “Ob universalnykh prostrastvakh dlya nekotorykh klassov beskonechnomernykh prostranstv”, Izv. AN SSSR. Ser. matem., 23:2 (1959), 185–196 | MR | Zbl

[116] Yu. Smirnov, “On dimensional properties of infinite-dimensional spaces”, General Topology and its Relations to Modern Analysis and Algebra IV, Proc. Sympos. (Prague, 1961), 1962, 334–336 | MR | Zbl

[117] Yu. M. Smirnov, “Neskolko zamechanii o transfinitnoi razmernosti”, Dokl. AN SSSR, 141:4 (1961), 814–817 | MR | Zbl

[118] Yu. M. Smirnov, “O transfinitnoi razmernosti”, Matem. sb., 58:4 (1962), 415–422 | MR | Zbl

[119] Yu. M. Smirnov, “Einige Bemerkungen zu meinem Bericht “Über die Dimension der Adjunkten bei Kompaktifizierungen””, Monatsberichte Deutsch. Akad. Wiss., 7:10/11 (1965), 750–753 | MR | Zbl

[120] Yu. M. Smirnov, “O razmernosti narostov bikompaktnykh rasshirenii blizostnykh i topologicheskikh prostranstv”, Matem. sb., 69:1 (1966), 141–160 | MR

[121] Yu. M. Smirnov, “O razmernosti narostov blizostnykh i topologicheskikh prostranstv”, Dokl. AN SSSR, 168:3 (1966), 528–531 | Zbl

[122] Yu. M. Smirnov, “O razmernosti narostov bikompaktnykh rasshirenii blizostnykh i topologicheskikh prostranstv. II”, Matem. sb., 71:4 (1966), 454–482 | MR

[123] Yu. M. Smirnov, “Uplotneniya na bikompakty i svyaz s bikompaktnymi rasshireniyami i s retraktsiei”, Fund. Math., 63:2 (1968), 199–211 | MR | Zbl

[124] Yu. M. Smirnov, E. G. Sklyarenko, “Nekotorye voprosy teorii razmernosti”, Trudy 4-go Vsesoyuznogo matemat. s'ezda, T. I. Plenarnye doklady (Leningrad, 1961), Izd-vo AN SSSR, L., 1963, 219–226

[125] R. Solovay, S. Tennenbaum, “Iterated Cohen extensions and Souslin's problem”, Ann. of Math. (2), 94 (1971), 201–245 | DOI | MR | Zbl

[126] Z. Szentmiklossy, “$S$-spaces and $L$-spaces under Martin's axiom”, Colloq. Math. Soc. János Bolyai, 23 (1980), 1139–1145 | MR | Zbl

[127] L. A. Tumarkin, “Sur la stucture dimensionnelle des ensembles fermes”, C. R. Acad. Sci. Paris, 186 (1928), 420–422 | Zbl

[128] P. Urysohn, “Memoire sur les multiplicités cantoriennes”, Fund. Math., 7 (1925), 30–137

[129] P. Urysohn, “Memoire sur les multiplicités cantoriennes (suite)”, Fund. Math., 8 (1926), 225–359

[130] N. B. Vedenisov, “Zamechanie o razmernosti topologicheskikh prostranstv”, Uch. zapiski Mosk. un-ta, 30 (1939), 131–140

[131] H. Wallman, “Lattices and topological spaces”, Ann. of Math. (2), 39 (1938), 112–126 | DOI | MR | Zbl

[132] W. A. R. Weiss, “Countably compact spaces and Martin's axiom”, Canad. J. Math., 30 (1978), 243–249 | MR | Zbl

[133] A. V. Zarelua, “O teoreme Gurevicha”, Dokl. AN SSSR, 141:4 (1961), 777–780 | MR | Zbl

[134] A. V. Zarelua, “O teoreme Gurevicha”, Matem. sb., 60:1 (1963), 17–28 | MR

[135] A. V. Zarelua, “O ravenstve razmernostei”, Matem. sb., 62 (1963), 295–319 | MR | Zbl

[136] A. V. Zarelua, “O prodolzhenii otobrazhenii na rasshireniya, obladayuschie nekotorymi spetsialnymi svoistvami”, Sib. matem. zhurn., 5 (1964), 532–548 | MR | Zbl

[137] V. P. Zolotarev, “O razmernosti podprostranstv”, Vestn. MGU. Ser. 1. Matem., mekh., 1975, no. 5, 10–12 | MR | Zbl