On some problems of topological dimension theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 2, pp. 361-398

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey is devoted to problems in dimension theory related to the works of Smirnov. New results concern the dimensions of subsets of manifolds. Under the continuum hypothesis we construct two infinite-dimensional 4-manifolds. The first is a manifold “without intermediate dimensions”, that is, every closed subset of it is either infinite-dimensional or of dimension at most four. In the second manifold the dimensions of open subsets take infinitely many values.
@article{RM_2002_57_2_a3,
     author = {V. V. Fedorchuk},
     title = {On some problems of topological dimension theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {361--398},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - On some problems of topological dimension theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 361
EP  - 398
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/
LA  - en
ID  - RM_2002_57_2_a3
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T On some problems of topological dimension theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 361-398
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/
%G en
%F RM_2002_57_2_a3
V. V. Fedorchuk. On some problems of topological dimension theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 2, pp. 361-398. http://geodesic.mathdoc.fr/item/RM_2002_57_2_a3/