Metrically homogeneous spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 2, pp. 221-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey discusses the problem of describing properties of the class of metric spaces in which the Uryson construction of a universal homogeneous metric space (for this class) can be carried out axiomatically. One of the main properties of this kind is the possibility of gluing together two metrics given on closed subsets and coinciding on their intersection. The uniqueness problem for a (countable or complete) homogeneous space universal in a given class of metric spaces is discussed. The problem of extending a Clifford translation of a compact subset of an (ultrametric) Uryson space to a Clifford translation of the entire Uryson space is studied.
@article{RM_2002_57_2_a0,
     author = {S. A. Bogatyi},
     title = {Metrically homogeneous spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {221--240},
     year = {2002},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_2_a0/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - Metrically homogeneous spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 221
EP  - 240
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_2_a0/
LA  - en
ID  - RM_2002_57_2_a0
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T Metrically homogeneous spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 221-240
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2002_57_2_a0/
%G en
%F RM_2002_57_2_a0
S. A. Bogatyi. Metrically homogeneous spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 2, pp. 221-240. http://geodesic.mathdoc.fr/item/RM_2002_57_2_a0/

[1] D. Gilbert, Osnovaniya geometrii, Gostekhizdat, M.–L., 1948

[2] H. Weyl, Mathematische Analyse der Raumproblems, Springer-Verlag, Berlin, 1923

[3] A. Kolmogoroff, “Zur topologisch-gruppentheoretischen Begründung der Geometrie”, Nachr. Königl. Gesell. Wiss. Göttingen., 2 (1930), 208–210

[4] H. Busemann, “On Leibniz's definition of planes”, Amer. J. Math., 63 (1941), 101–111 | DOI | MR | Zbl

[5] H. Busemann, Metric Methods in Finsler Spaces and in the Foundations of Geometry, Ann. of Math. Stud., 8, Princeton Univ. Press, Princeton, 1942 | MR | Zbl

[6] G. Birkhoff, “Metric foundations of geometry. I”, Trans. Amer. Math. Soc., 55:3 (1944), 465–492 | DOI | MR | Zbl

[7] G. Birkhoff, “Extensions of Lie groups”, Math. Z., 53:3 (1950), 226–235 | DOI | MR | Zbl

[8] H. Busemann, Recent Synthetic Differential Geometry, Ergeb. Math. Grenzgeb., 54, Springer-Verlag, Berlin, 1970 | MR | Zbl

[9] H.-C. Wang, “Two theorems on metric spaces”, Pacific J. Math., 1:3 (1951), 473–480 | MR | Zbl

[10] H.-C. Wang, “Two-point homogeneous spaces”, Ann. of Math. (2), 55:1 (1952), 177–191 | DOI | MR | Zbl

[11] J. Tits, “Étude de certains espaces métriques”, Bull. Soc. Math. Belg., 5 (1952 (publié en 1953)), 44–52 | MR

[12] J. Tits, “Sur un article précédent: “Étude de certains espaces métriques””, Bull. Soc. Math. Belg., 6 (1953 (publié en 1954)), 126–127 | MR

[13] J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci., 29, Acad. Roy. Belgique, Brussels, 1955 | MR | Zbl

[14] H. Freudenthal, “Neuere Fassungen des Riemann–Helmholtz–Lieschen Raumproblems”, Math. Z., 63 (1956), 374–405 | DOI | MR | Zbl

[15] H. Freudenthal, “Zur Geschichte der Grundlagen der Geometrie”, Nieuw Arch. Wisk. (3), 5 (1957), 105–142 | MR | Zbl

[16] H. Freudenthal, “Die Grundlagen der Geometrie um die Wende des 19. Jahrhunderts”, Math.-Phys. Semesterber, 7 (1960), 1–25 | MR

[17] H. Freudenthal, “Zu den Weyl-Cartanschen Raumproblemen”, Arch. Math., 11 (1960), 107–115 | DOI | MR | Zbl

[18] H. Freudenthal, “Lie Groups in the foundations of geometry”, Adv. Math., 1:2 (1964), 145–190 | MR | Zbl

[19] V. H. G. Singh, “Two point homogeneous spaces”, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 68 (1965), 746–753 | Zbl

[20] H. Freudenthal, “Zweifache Homogenität und Symmetrie”, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 70:1 (1967), 18–22 | MR | Zbl

[21] H. Matsumoto, “Quelques remarques sur les espaces riemanniens isotropes”, C. R. Acad. Sci. Paris. Sér. A, 272:4 (1971), 316–319 | MR | Zbl

[22] Dzh. Volf, Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[23] A. L. Onischik, Topologiya tranzitivnykh grupp preobrazovanii, Nauka, M., 1995 | MR | Zbl

[24] F. Bakhman, Postroenie geometrii na osnove ponyatiya simmetrii, Nauka, M., 1969

[25] P. S. Uryson, Trudy po topologii i drugim oblastyam matematiki, 2, Gostekhizdat, M., 1951 | MR

[26] A. M. Vershik, “Universalnoe prostranstvo Urysona, metricheskie troiki Gromova i sluchainye metriki na naturalnom ryade”, UMN, 53:5 (1998), 57–64 | MR | Zbl

[27] S. A. Bogatyi, “Universalnaya odnorodnaya ratsionalnaya ultrametrika na prostranstve irratsionalnykh chisel”, Vestnik MGU. Ser. matem., mekh., 2000, no. 6, 20–24 | MR | Zbl

[28] S. A. Bogatyi, “Kompaktnaya odnorodnost universalnogo metricheskogo prostranstva Urysona”, UMN, 55:2 (2000), 131–132 | MR | Zbl

[29] V. I. Trofimov, “Ob odnom svoistve universalnogo metricheskogo prostranstva Urysona”, Matem. zametki, 69:2 (2001), 319–320 | MR | Zbl

[30] Yu. M. Smirnov, “Geometriya beskonechnykh ravnomernykh kompleksov i $\delta$-razmernost tochechnykh mnozhestv”, Matem. sb., 40:2 (1956), 137–156 | MR | Zbl

[31] L. M. Blumenthal, Theory and Applications of Distance Geometry, Chelsea, New York, 1970 | MR | Zbl

[32] L. Janos, “A metric characterization of zero-dimensional spaces”, Proc. Amer. Math. Soc., 31:1 (1972), 268–270 | DOI | MR | Zbl

[33] S. D. Iliadis, “Kompaktnye i vpolne ogranichennye metricheskie prostranstva i izometricheskie vlozheniya”, UMN, 50:6 (1995), 179–180 | MR | Zbl

[34] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–78 | DOI | MR | Zbl

[35] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, S.-Peterburg, 1994 | MR | Zbl

[36] D. Avis, “On the extreme rays of the metric cone”, Canad. J. Math., 32:1 (1980), 126–144 | MR | Zbl

[37] S. Watson, “The classification of metrics and multivariate statistical analysis”, Topology Appl., 99 (1999), 237–261 | DOI | MR | Zbl

[38] E. A. Smolenskii, “Ob odnom sposobe lineinoi zapisi grafov”, Zhurn. vychisl. matem. i matem. fiz., 2:2 (1962), 371–372 | MR

[39] S. L. Hakimi, S. S. Yau, “Distance matrix of a graph and its realizability”, Quart. Appl. Math., 22:4 (1965), 305–317 | MR | Zbl

[40] K. A. Zaretskii, “Postroenie dereva po naboru rasstoyanii mezhdu visyachimi vershinami”, UMN, 20:6 (1965), 90–92 | MR

[41] J. M. S. Simões Pereira, “A note on the tree realizability of a distance matrix”, J. Combin. Theory, 6:3 (1969), 303–310 | DOI | MR | Zbl

[42] P. Buneman, “A note on the metric properties of trees”, J. Combin. Theory Ser. B, 17 (1974), 48–50 | DOI | MR | Zbl

[43] J. Mayer, J. Nikiel, L. Oversteegen, “Universal spaces for $\mathbb R$-trees”, Trans. Amer. Math. Soc., 334:1 (1992), 411–432 | DOI | MR | Zbl

[44] M. Gromov, “Hyperbolic groups”, Math. Sci. Res. Inst. Publ., 8 (1987), 75–263 | MR | Zbl

[45] M. Gromov, Geometric Group Theory. V. 2: Asymptotic Invariants of Infinite Groups, Proceedings of the symposium held at the Sussex University (Brighton, 1991), London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[46] M. Culler, P. B. Shalen, “Varieties of group representations and splittings of 3-manifolds”, Ann. of Math. (2), 117 (1983), 109–146 | DOI | MR | Zbl

[47] J. W. Morgan, P. B. Shalen, “Valuations, trees, and degenerations of hyperbolic structures. I”, Ann. of Math. (2), 120 (1984), 401–476 | DOI | MR | Zbl

[48] M. Bestvina, “Degenerations of the hyperbolic space”, Duke Math. J., 56:1 (1988), 143–161 | DOI | MR | Zbl

[49] E. Gis, P. de lya Arp, Giperbolicheskie gruppy po Mikhailu Gromovu, Mir, M., 1992 | MR

[50] J. W. Morgan, “$\Lambda$-trees and their applications”, Bull. Amer. Math. Soc., 26:1 (1992), 87–112 | DOI | MR | Zbl

[51] B. H. Bowditch, “Treelike structures arising from continua and convergence groups”, Mem. Amer. Math. Soc., 139, no. 662, 1999, 1–86 | MR

[52] M. Kapovich, B. Leeb, “On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds”, Geom. Funct. Anal., 5:3 (1995), 582–603 | DOI | MR | Zbl

[53] M. E. Tylkin (M. Deza), “O geometrii Khemminga edinichnykh kubov”, Dokl. AN SSSR, 134:5 (1960), 1037–1040 | MR

[54] S. Mazur, S. Ulam, “Sur les transformations isométriques d'espaces vectoriels, normés”, C. R. Acad. Sci. Paris, 194 (1932), 946–948 | Zbl

[55] I. Polterovich, A. Shnirelman, “Asimptoticheskii podkonus ploskosti Lobachevskogo kak prostranstvo funktsii”, UMN, 52:4 (1997), 209–210 | MR | Zbl

[56] A. G. Dyubina, I. V. Polterovich, “Struktury na beskonechnosti giperbolicheskikh prostranstv”, UMN, 53:5 (1998), 239–240 | MR | Zbl

[57] D. van Dantzig, “Über topologisch homogene Kontinua”, Fund. Math., 15 (1930), 102–125

[58] F. John, “Extremum problems with inequalities as subsidiary conditions”, Studies and essays, presented to R. Courant on his 60th birthday, New York, 1948, 187–204 | MR | Zbl

[59] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985 | MR

[60] S. Ulam, Nereshennye matematicheskie zadachi, Nauka, M., 1964 | Zbl

[61] E. B. Vinberg, Kurs algebry, Faktorial, M., 1999

[62] B. Huppert, Angewandte lineare Algebra, de Gruyter, Berlin, 1990 | MR | Zbl

[63] H. Rummler, “On two characteristic properties of Euclidean norms”, Elem. Math., 46 (1991), 111–115 | MR | Zbl

[64] D. van Dantzig, B. L. van der Waerden, “Über metrisch homogene Räume”, Abh. Math. Hamburg. Univ., 6 (1928), 367–376 | DOI | Zbl

[65] M. M. Postnikov, Rimanova geometriya, Faktorial, M., 1998

[66] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR