Hirzebruch genus of a manifold supporting a Hamiltonian circle action
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 5, pp. 978-979
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2001_56_5_a4,
author = {K. E. Feldman},
title = {Hirzebruch genus of a~manifold supporting {a~Hamiltonian} circle action},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {978--979},
year = {2001},
volume = {56},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2001_56_5_a4/}
}
K. E. Feldman. Hirzebruch genus of a manifold supporting a Hamiltonian circle action. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 5, pp. 978-979. http://geodesic.mathdoc.fr/item/RM_2001_56_5_a4/
[1] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progr. Math., 93, Birkhäuser, Basel, 1991 | Zbl
[2] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Vieweg, Braunschweig, 1992 | Zbl
[3] S. P. Novikov, Izv. AN SSSR. Ser. matem., 32 (1968), 1245–1263 | MR
[4] I. M. Krichever, Izv. AN SSSR. Ser. matem., 38 (1974), 1289–1304 | MR | Zbl
[5] S. Tolman, J. Weitsman, Topology, 39:2 (2000), 299–309 | DOI | MR | Zbl
[6] D. McDuff, J. Geom. Phys., 5:2 (1988), 149–160 | DOI | MR | Zbl
[7] J. D. S. Jones, J. H. Rawnsley, J. Geom. Phys., 23:3–4 (1997), 301–307 | DOI | MR | Zbl