Gibbs and quantum discrete spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 5, pp. 917-972 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gibbs field is one of the central objects of modern probability theory, mathematical statistical physics, and Euclidean field theory. In this paper we introduce and study a natural generalization of this field to the case in which the background space (a lattice, a graph) on which the random field is defined is itself a random object. Moreover, this randomness is given neither a priori nor independent of the configuration; on the contrary, the space and the configuration on it depend on each other, and both objects are given by a Gibbs construction. We refer to the resulting distribution as a Gibbs family because it parametrizes Gibbs fields on different graphs belonging to the support of the distribution. We also study the quantum analogue of Gibbs families and discuss relationships with modern string theory and quantum gravity.
@article{RM_2001_56_5_a1,
     author = {V. A. Malyshev},
     title = {Gibbs and quantum discrete spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {917--972},
     year = {2001},
     volume = {56},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_5_a1/}
}
TY  - JOUR
AU  - V. A. Malyshev
TI  - Gibbs and quantum discrete spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 917
EP  - 972
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2001_56_5_a1/
LA  - en
ID  - RM_2001_56_5_a1
ER  - 
%0 Journal Article
%A V. A. Malyshev
%T Gibbs and quantum discrete spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 917-972
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2001_56_5_a1/
%G en
%F RM_2001_56_5_a1
V. A. Malyshev. Gibbs and quantum discrete spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 5, pp. 917-972. http://geodesic.mathdoc.fr/item/RM_2001_56_5_a1/

[1] R. L. Dobrushin, “Opisanie sluchainogo polya pri pomoschi uslovnykh veroyatnostei i usloviya ego regulyarnosti”, Teoriya veroyatn. i ee primen., 13:2 (1968), 201–229 | MR

[2] O. Lanford, D. Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics”, Comm. Math. Phys., 13 (1969), 174–215 | DOI

[3] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki, Mir, M., 1984

[4] O. Brattelli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics, V. I, 1979; V. II, Springer-Verlag, New York, 1981

[5] A. Connes, “A short survey of noncommutative geometry”, J. Math. Phys., 41 (2000), 3832–3866 | DOI | MR | Zbl

[6] G. Landi, An Introduction to Noncommutative Spaces and their Geometries, Lecture Notes in Phys., 51, Springer-Verlag, Berlin, 1997

[7] G. Landi, F. Lizzi, “Projective systems of noncommutative lattices as a pregeometric substratum”, Quantum Groups and Fundamental Physical Applications, eds. D. Kastler, M. Rosso, Nova Science Publishers, USA, 1998

[8] Yu. Manin, Topics in Noncommutative Geometry, Princeton Univ. Press, Princeton, 1991 | Zbl

[9] R. Penrose, “Angular momentum: an approach to combinatorial space-time”, Quantum Theory and Beoynd, ed. T. Bastin, Cambridge Univ. Press, Cambridge, 1971, 151–180

[10] J. Baez, “Spin network states in gauge theory”, Adv. Math., 117 (1996), 253–272 | DOI | MR | Zbl

[11] V. Malyshev, “Veroyatnost vokrug kvantovoi gravitatsii”, UMN, 54:4 (1999), 3–46 | MR | Zbl

[12] J. Ambjorn, M. Carfora, A. Marzuoli, The geometry of dynamical triangulations, http://xxx.lanl.gov/hep-th/9612069

[13] D. V. Boulatov, “Three-dimensional simplicial gravity and combinatorics of group presentations”, J. High Energy Phys., 10:7 (1998) | MR

[14] E. Bender, E. Canfield, L. Richmond, “The asymptotic number of rooted maps on a surface. II: Enumeration by vertices and faces”, J. Combin. Theory Ser. A, 63 (1993), 318–329 | DOI | MR | Zbl

[15] M. Krikun, V. Malyshev, “Asimptoticheskoe chislo kart na kompaktnykh orientirovannykh poverkhnostyakh”, Diskretn. matem., 13:2 (2001), 89–98 | MR | Zbl

[16] T. Walsh, A. Lehman, “Counting rooted maps by genus. I–III”, J. Combin. Theory Ser. B, 13 (1972), 192–218 ; 13 (1972), 122–141 ; 18 (1975), 222–259 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[17] P. Bialas, Z. Burda, D. Johnston, “Phase diagram of the mean-field model of simplicial gravity”, Nuclear Phys. B, 542 (1999), 413–424 | DOI | MR | Zbl

[18] G. Thorleifson, “Lattice gravity and random surfaces”, Nuclear Phys. B. Proc. Suppl., 73 (1999), 133–145 | DOI

[19] V. Malyshev, A. Yakovlev, “Condensation in large closed Jackson networks”, Ann. Appl. Probab., 6:1 (1996), 92–115 | DOI | MR | Zbl

[20] B. Bollobas, Random Graphs, Academic Press, London, 1985 | Zbl

[21] I. Goulden, D. Jackson, Combinatorial Enumeration, Wiley, New York, 1983 | Zbl

[22] V. Kazakov, M. Staudacher, Th. Wynter, “Exact solution of discrete two-dimensional $R^2$ gravity”, Nuclear Phys. B, 471 (1996), 309–333 | DOI | MR | Zbl

[23] M. Atya, Geometriya i fizika uzlov, Mir, M., 1995

[24] Y. Watabiki, “Construction of noncritical string field theory by transfer matrix formalism in dynamical triangulation”, Nuclear Phys. B, 441:1–2 (1995), 119–163 | DOI | MR | Zbl

[25] J. Baez, Higher-dimensional algebra and Planck-scale physics, http://xxx.lanl.gov/gr-qc/9902017

[26] N. Ishibashi, H. Kawai, “String field theory of noncritical strings”, Phys. Lett. B, 322 (1994), 67–78 | DOI | Zbl

[27] J. Ambjorn, B. Durhuus, T. Jonsson, Quantum Geometry, Cambridge, 1997

[28] W. Tutte, “The enumerative theory of planar maps”, A Survey of Combinatorial Theory, eds. J. Srivastava et al., North-Holland, Amsterdam, 1973, 437–448 | MR

[29] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Wiley, New York, 1966

[30] V. Malyshev, “Makrorazmernost – invariant lokalnoi dinamiki”, Teoriya veroyatn. i ee primen., 45:2 (2000), 368–374 | MR | Zbl

[31] Ph. Gibbs, The small scale structure of space-time: A bibliographical Review, Preprint , 1995 E-print hep-th/9506171

[32] D. Wallace, The quantization of gravity – an introduction, Preprint , 2000 E-print gr-qc/0004005

[33] C. Rovelli, Strings, loops and others: a critical survey of the present approaches to quantum gravity, Preprint , 1998 E-print gr-qc/9803024

[34] J. Frohlich, Regge calculus and discretized gravitational functional integral, Preprint, Zürich, 1990

[35] L. A. Pastur, “Spectral and probabilistic aspects of random matrix models”, Algebraic and Geometric Methods in Mathematical Physics, Math. Phys. Stud., 19, eds. A. Boutet de Monvel, V. A. Marchenko, Kluwer, Dordrecht, 1996, 207–242

[36] V. A. Malyshev, R. A. Minlos, Gibbsovskie sluchainye polya, Nauka, M., 1985

[37] J. Harer, D. Zagier, “The Euler characteristic of the moduli space of curves”, Invent. Math., 85 (1986), 457–485 | DOI | MR | Zbl

[38] M. Kontsevich, “Intersection theory on the moduli spaces of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[39] A. Okounkov, Gromov–Witten theory, Hurwitz numbers, and matrix models, I, E-print archive , 2001 E-print math.AG/0101147

[40] A. Zvonkin, “Matrix integrals and map enumeration: An accessible introduction”, Math. Comput. Modelling, 26:8–10 (1997), 281–304 | DOI | MR

[41] E. Brezin, C. Itzykson, G. Parisi, J. Zuber, “Planar Diagrams”, Comm. Math. Phys., 59 (1978), 35–47 | DOI | MR

[42] V. A. Kazakov, “Solvable matrix models”, Talk delivered at Workshop “Matrix Models and Painleve equations” (Berkeley, 1999), 2000; E-print archive hep-th/0003064

[43] M. Reisenbereger, C. Rovelli, Spin foams as Feynman diagrams, E-print archive ArXiv: gr-qc/0002083

[44] E. Witten, “2+1 gravity as an exactly soluble model”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR

[45] D. Reid, Introduction to causal sets: an alternate view of space-time structure, http://xxx.lanl.gov/gr-qc/9909075

[46] G. Landi, An introduction to noncommutative spaces and their geometry, , 1997 E-print archive hep-th/0003064

[47] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978

[48] V. Malyshev, “Quantum Grammars”, J. Math. Phys., 7 (2000), 4508–4520 | DOI | MR | Zbl

[49] R. Feynman, “Simulating physics with computers”, Internat. J. Theoret. Phys., 21 (1982), 467–488 | DOI | MR

[50] G. 't Hooft, “Quantization of discrete deterministic theories by Hilbert space extension”, Nuclear Phys. B, 342 (1990), 471–485 | DOI | MR

[51] G. 't Hooft, Determinism and dissipation in quantum gravity, Preprint , 2000 http://xxx.lanl.gov/hep-th/0003005

[52] V. Malyshev, A. Yambartsev, A. Zamyatin, “Two-dimensional Lorentzian models”, Moscow Math. J., 1:3 (2001), 439–456 | MR | Zbl

[53] J. Ambjoern, J. Jurkiewich, R. Loll, Lorentzian and Euclidean quantum gravity – analytical and numerical results, http://xxx.lanl.gov/hep-th/0001124

[54] J. Ambjoern, R. Loll, “Non-perturbative Lorentzian quantum gravity, causality and topology change”, Nuclear Phys. B, 536:1–2 (1999), 407–434 | MR | Zbl

[55] V. G. Kac, A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Adv. Ser. Math. Phys., 2, World Scientific, Singapore, 1987