Singularities of affine fibrations in the regularity theory of Fourier integral operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 93-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider regularity properties of Fourier integral operators in various function spaces. The most interesting case is the $L^p$ spaces, for which survey of recent results is given. For example, sharp orders are known for operators satisfying the so-called smooth factorization condition. Here this condition is analyzed in both real and complex settings. In the letter case, conditions for the continuity of Fourier integral operators are related to singularities of affine fibrations in $\mathbb C^n$ (or subsets of $\mathbb C^n$) specified by the kernels of Jacobi matrices of holomorphic maps. Singularities of such fibrations are analyzed in this paper in the general case. In particular, it is shown that if the dimension $n$ or the rank of the Jacobi matrix is small, then all singularities of an affine fibration are removable. The fibration associated with a Fourier integral operator is given by the kernels of the Hessian of the phase function of the operator. On the basis of an analysis of singularities for operators commuting with translations we show in a number of cases that the factorization condition is satisfied, which leads to $L^p$ estimates for operators. In other cases, examples are given in which the factorization condition fails. The results are applied to deriving $L^p$ estimates for solutions of the Cauchy problem for hyperbolic partial differential operators.
@article{RM_2000_55_1_a2,
     author = {M. V. Ruzhansky},
     title = {Singularities of affine fibrations in the regularity theory of {Fourier} integral operators},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {93--161},
     year = {2000},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2000_55_1_a2/}
}
TY  - JOUR
AU  - M. V. Ruzhansky
TI  - Singularities of affine fibrations in the regularity theory of Fourier integral operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 93
EP  - 161
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2000_55_1_a2/
LA  - en
ID  - RM_2000_55_1_a2
ER  - 
%0 Journal Article
%A M. V. Ruzhansky
%T Singularities of affine fibrations in the regularity theory of Fourier integral operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 93-161
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2000_55_1_a2/
%G en
%F RM_2000_55_1_a2
M. V. Ruzhansky. Singularities of affine fibrations in the regularity theory of Fourier integral operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 93-161. http://geodesic.mathdoc.fr/item/RM_2000_55_1_a2/

[1] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | Zbl

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982

[3] Beals R. M., “$L^p$ boundedness of Fourier integrals operators”, Mem. Amer. Math. Soc., 264, 1982, 1–57 | MR

[4] Bennett C., Sharpley R., Interpolation of Operators, Pure Appl. Math., 129, Academic Press, Boston, 1988

[5] Björk J. E., Rings of Differential Operators, North-Holland, Amsterdam, 1979 | Zbl

[6] Chow W. L., “On compact analytic varieties”, Amer. J. Math., 71 (1955), 893–914 | DOI

[7] Colin de Verdière Y., Frisch M., “Régularité lipschitzienne et solutions de l'équation des ondes sur une variété riemannienne compacte”, Ann. Sci. École Norm. Sup. (4), 9 (1976), 539–565 | MR | Zbl

[8] Duistermaat J. J., Fourier Integral Operators, Courant Inst. of Math. Sci., New York University, New York, 1973 | Zbl

[9] Duistermaat J. J., Classical Aspects of Partial Differential Equations, Comm. Math. Inst., 13, Rijksuniversiteit Utrecht, Utrecht, 1980 | Zbl

[10] Duistermaat J. J., Fourier Integral Operators, Birkhäuser, Boston, 1996

[11] Duren P. L., Theory of $H^p$ Spaces, Pure Appl. Math., 38, Academic Press, New York, 1970

[12] Egorov Yu. V., “Mikrolokalnyi analiz”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravleniya, 33, VINITI, M., 1988, 5–156

[13] Egorov Yu. V., Shubin M. A., “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Elementy sovremennoi teorii”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravleniya, 31, VINITI, M., 1988, 5–125

[14] Eskin G. I., “Vyrozhdennye ellipticheskie psevdodifferentsialnye operatory printsipialnogo tipa”, Matem. sb., 82 (1970), 585–628 | MR

[15] Fefferman C., “$L^p$ bounds for pseudo-differential operators”, Israel J. Math., 14 (1973), 413–417 | DOI | MR | Zbl

[16] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[17] Greenleaf A., Uhlmann G., “Non-local inversion formulas for the X-ray transform”, Duke Math. J., 58 (1989), 205–240 | DOI | MR | Zbl

[18] Greenleaf A., Uhlmann G., “Estimates for singular Radon transforms and pseudo-differential operators with singular symbols”, J. Funct. Anal., 89 (1990), 202–232 | DOI | MR | Zbl

[19] Guillemin V., Cosmology in $(2+1)$ Dimensions, Cyclic Models, and Deformations of $M_{2,1}$, Princeton Univ. Press, Princeton, 1989 | Zbl

[20] Guillemin V., Uhlmann G., “Oscillatory integrals with singular symbols”, Duke Math. J., 48 (1981), 251–267 | DOI | MR | Zbl

[21] Hardy G. H., Littlewood J. E., “Some properties of fractional integrals”, Math. Z., 27 (1928), 565–606 | DOI | MR

[22] Khartshorn R., Algebraicheskaya geometriya, Mir, M., 1981

[23] Hörmander L., “Fourier integral operators, I”, Acta Math., 127 (1971), 79–183 | DOI | MR | Zbl

[24] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 3, 1987; Рў. 4, РњРёСЂ, Рњ., 1988

[25] Ivrii V. Ya., “Lineinye giperbolicheskie uravneniya”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravleniya, 33, VINITI, M., 1988

[26] Komech A. I., “Lineinye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravleniya, 31, VINITI, M., 1988

[27] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravleniya, 32, VINITI, M., 1988

[28] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985

[29] Łojasiewicz S., Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991

[30] Laptev A., Safarov Yu., Vassiliev D., “On global representation of Lagrangian distributions and solutions of hyperbolic equations”, Comm. Pure Appl. Math., 47 (1994), 1411–1456 | DOI | MR | Zbl

[31] Littman W., “$L^p$–$L^q$-estimates for singular integral operators arising from hyperbolic equations”, Proc. Sympos. Pure Math., 23, 1973, 479–481 | MR | Zbl

[32] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976

[33] Melin A., Sjöstrand J., “Fourier integral operators with complex-valued phase functions”, Lecture Notes in Math., 459, 1975, 120–223 | MR | Zbl

[34] Melin A., Sjöstrand J., “Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem”, Comm. Partial Differential Equations, 1 (1976), 313–400 | DOI | MR | Zbl

[35] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | Zbl

[36] Miyachi A., “On some estimates for the wave operator in $L^p$ and $H^p$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 331–354 | MR | Zbl

[37] Nagel A., Stein E. M., Lectures on Pseudo-Differential Operators: Regularity Theorems and Applications to Non-Elliptic Problems, Math. Notes, 24, Princeton Univ. Press, Princeton, 1979 | Zbl

[38] Oberlin D. M., “Convolution estimates for some measures on curves”, Proc. Amer. Math. Soc., 99 (1987), 56–60 | DOI | MR | Zbl

[39] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967

[40] Peral J., “$L^p$ estimates for the wave equation”, J. Funct. Anal., 36 (1980), 114–145 | DOI | MR | Zbl

[41] Phong D. H., “Regularity of Fourier integral operators”, Proceedings of the International Congress of Mathematicians, V. II (Zürich, 1994), ed. S. D. Chatterji, Birkhäuser, Basel, 1995, 862–874 | MR | Zbl

[42] Phong D. H., “Singular integrals and Fourier integral operators”, Essays on Fourier Analysis in Honor of E. M. Stein, eds. C. Fefferman, R. Fefferman, S. Wainger, Princeton Univ. Press, Princeton, 1995, 286–320 | MR | Zbl

[43] Phong D. H., Stein E. M., “Radon transforms and torsion”, Internat. Math. Res. Notices, 4 (1991), 49–60 | DOI | MR | Zbl

[44] Phong D. H., Stein E. M., “Oscillatory integrals with polynomial phases”, Invent. Math., 110 (1992), 39–62 | DOI | MR | Zbl

[45] Picard E., Simart G., Théorie des fonctions algébriques de deux variables indépendentes, Paris, 1897–1906

[46] Remmert R., “Holomorphe und meromorphe Abbildungen komplexer Räume”, Math. Ann., 133 (1957), 328–370 | DOI | MR | Zbl

[47] Ruzhansky M., “Analytic Fourier integral operators, Monge–Ampère equation and holomorphic factorization”, Arch. Mat., 72 (1999), 68–76 | DOI | MR | Zbl

[48] Ruzhansky M., “Holomorphic factorization for the solution operators for hyperbolic equations”, Internat. Ser. Numer. Math., 130 (1999), 803–811 | MR | Zbl

[49] Ruzhansky M., “On the sharpness of Seeger–Sogge–Stein orders”, Hokkaido Math. J., 28 (1999), 357–362 | MR | Zbl

[50] Ruzhansky M., “Singular fibrations with affine fibers” (to appear)

[51] Ruzhansky M., Sharp Estimates for a Class of Hyperbolic Partial Differential Operators, University of Edinburgh, Edinburgh, 1999

[52] Ruzhansky M., “On the failure of the factorization condition for the invariant wave fronts”, Proc. Amer. Math. Soc. (to appear)

[53] Seeger A., Sogge C. D., Stein E. M., “Regularity properties of Fourier integral operators”, Ann. of Math., 134 (1991), 231–251 | DOI | MR | Zbl

[54] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1988

[55] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978

[56] Sogge C. D., Fourier Integrals in Classical Analysis, Cambridge Univ. Press, Cambridge, 1993 | Zbl

[57] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[58] Stein E. M., “$L^p$ boundedness of certain convolution operators”, Bull. Amer. Math. Soc., 77 (1971), 404–405 | DOI | MR | Zbl

[59] Stein E. M., Harmonic Analysis, Princeton Univ. Press, Princeton, 1993 | Zbl

[60] Stein E. M., Wainger S., “Problems in harmonic analysis related to curvature”, Bull. Amer. Math. Soc., 84 (1978), 1239–1295 | DOI | MR | Zbl

[61] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971

[62] Sugimoto M., “On some $L^p$-estimates for hyperbolic equations”, Ark. Mat., 30 (1992), 149–162 | DOI | MR

[63] Taylor M. E., “Propagation, reflection, and diffraction of singularities of solutions to wave equation”, Bull. Amer. Math. Soc., 84 (1978), 589–611 | DOI | MR | Zbl

[64] Taylor M. E., “Fefferman–Phong inequalities in diffraction theory”, Proc. Sympos. Pure Math., 43, 1985, 261–300 | Zbl

[65] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | Zbl

[66] Volevich L. P., Gindikin S. G., “Zadacha Koshi”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravleniya, 32, VINITI, M., 1988

[67] Wainger S., “Special trigonometric series in k-dimensions”, Mem. Amer. Math. Soc., 59, 1965, 1–98 | MR

[68] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965