On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 186-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2000_55_1_a13,
     author = {S. I. Tertychnyi},
     title = {On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a~periodic~$f$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {186--187},
     year = {2000},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/}
}
TY  - JOUR
AU  - S. I. Tertychnyi
TI  - On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 186
EP  - 187
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/
LA  - en
ID  - RM_2000_55_1_a13
ER  - 
%0 Journal Article
%A S. I. Tertychnyi
%T On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 186-187
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/
%G en
%F RM_2000_55_1_a13
S. I. Tertychnyi. On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 186-187. http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/

[1] Kim J., Sosso A., Clark A. F., J. Appl. Phys., 83 (1998), 3225–3232 | DOI

[2] Jain A. K., Likharev K. K., Lukens J. E., Sauvageau J. E., Phys. Rep., 109 (1984), 309–426 | DOI

[3] Wiesenfeld K., Benz S. P., Booi P. A. A., J. Appl. Phys., 76 (1994), 3835–3846 | DOI

[4] Shapiro B. Ya., Dayan I., Gitterman M., Weiss G. H., Phys. Rev., B46 (1992), 8349–8352