On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 186-187
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2000_55_1_a13,
author = {S. I. Tertychnyi},
title = {On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a~periodic~$f$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {186--187},
year = {2000},
volume = {55},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/}
}
TY - JOUR AU - S. I. Tertychnyi TI - On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 186 EP - 187 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/ LA - en ID - RM_2000_55_1_a13 ER -
%0 Journal Article %A S. I. Tertychnyi %T On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2000 %P 186-187 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/ %G en %F RM_2000_55_1_a13
S. I. Tertychnyi. On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 186-187. http://geodesic.mathdoc.fr/item/RM_2000_55_1_a13/
[1] Kim J., Sosso A., Clark A. F., J. Appl. Phys., 83 (1998), 3225–3232 | DOI
[2] Jain A. K., Likharev K. K., Lukens J. E., Sauvageau J. E., Phys. Rep., 109 (1984), 309–426 | DOI
[3] Wiesenfeld K., Benz S. P., Booi P. A. A., J. Appl. Phys., 76 (1994), 3835–3846 | DOI
[4] Shapiro B. Ya., Dayan I., Gitterman M., Weiss G. H., Phys. Rev., B46 (1992), 8349–8352