Self-similar solutions and power geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 1-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The prime application of the ideas and algorithms of power geometry is in the study of parameter-free partial differential equations. To each differential monomial we assign a point in $\mathbb R^n$: the vector exponent of this monomial. To a differential equation corresponds its support, which is the set of vector exponents of the monomials in the equation. The forms of self-similar solutions of an equation can be calculated from the support using the methods of linear algebra. The equations of a combustion process, with or without sources, are used as examples. For a quasihomogeneous ordinary differential equation, this approach enables one to reduce the order and to simplify some boundary-value problems. Next, generalizations are made to systems of differential equations. Moreover, we suggest a classification of levels of complexity for problems in power geometry. This classification contains four levels and is based on the complexity of the geometric objects corresponding to a give problem (in the space of exponents). We give a comparative survey of these objects and of the methods based on them for studying solutions of systems of algebraic equations, ordinary differential equations, and partial differential equations. We list some publications in which the methods of power geometry have been effectively applied.
@article{RM_2000_55_1_a0,
     author = {A. D. Bruno},
     title = {Self-similar solutions and power geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--42},
     year = {2000},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2000_55_1_a0/}
}
TY  - JOUR
AU  - A. D. Bruno
TI  - Self-similar solutions and power geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 1
EP  - 42
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2000_55_1_a0/
LA  - en
ID  - RM_2000_55_1_a0
ER  - 
%0 Journal Article
%A A. D. Bruno
%T Self-similar solutions and power geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 1-42
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2000_55_1_a0/
%G en
%F RM_2000_55_1_a0
A. D. Bruno. Self-similar solutions and power geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 1-42. http://geodesic.mathdoc.fr/item/RM_2000_55_1_a0/

[1] Afendikov A. L., Babenko K. I., “Bifurkatsiya rozhdeniya tsikla v nekotorykh zadachakh s simmetriei”, Dokl. AN SSSR, 300:1 (1988), 14–19 | MR

[2] Afendikov A., Mielke A., “Bifurcation of homoclinic orbits to a saddle-focus in reversible systems with SO(2)-symmetry”, J. Differential Equations, 159:2 (1999), 370–402 | DOI | MR | Zbl

[3] Afendikov A. L., Milke A., “O semeistve obratimykh SO(2)-invariantnykh vektornykh polei s chetyrekhkratnym nepoluprostym nulevym sobstvennym znacheniem”, Dokl. AN, 369:2 (1999), 153–157 | MR

[4] Aranson A. B., “Vychislenie mnogogrannika Nyutona”, Materialy Mezhdunarodnoi konferentsii i Chebyshëvskikh chtenii, posvyaschennykh 175-letiyu so dnya rozhdeniya P. L. Chebyshëva, T. 1, MGU, M., 1996, 32–34 | MR

[5] Arnold V. I., “Normalnye formy funktsii v okrestnosti vyrozhdennykh kriticheskikh tochek”, UMN, 29:2 (1974), 11–49 | MR | Zbl

[6] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. T. 2. Monodromiya i asimptotiki integralov, Nauka, M., 1984

[7] Bernshtein D. N., “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4 | MR | Zbl

[8] Bernshtein D. N., Kushnirenko A. G., Khovanskii A. G., “Mnogogranniki Nyutona”, UMN, 31:3 (1976), 201–202 | MR

[9] Boggiatto P., Buzano E., Rodino L., Global Hypoellipticity and Spectral Theory, Akademie Verlag, Berlin, 1996 | Zbl

[10] Bryuno A. D., “Asimptotika reshenii nelineinykh sistem differentsialnykh uravnenii”, Dokl. AN SSSR, 143:4 (1962), 763–766 | MR | Zbl

[11] Bryuno A. D., “Normalnaya forma differentsialnykh uravnenii”, Dokl. AN SSSR, 157:6 (1964), 1276–1279 | MR | Zbl

[12] Bryuno A. D., “Stepennye asimptotiki reshenii nelineinykh sistem”, Izv. AN SSSR. Ser. matem., 29:2 (1965), 329–364 | MR | Zbl

[13] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Trudy MMO, 25, 1971, 119–262 ; 26, 1972, 199–238 | MR | Zbl

[14] Bryuno A. D., O stepennykh asimptotikakh reshenii nelineinykh sistem, Preprint No 54, IPM AN SSSR, M., 1973

[15] Bryuno A. D., Elementy nelineinogo analiza, Konspekt lektsii, SamGU, Samarkand, 1973

[16] Bryuno A. D., “Lokalnye metody v nelineinom analize”, Funktsionalnyi analiz i nekotorye voprosy KTDU, ed. E. V. Voskresenskii, Mordovskii un-t, Saransk, 1976, 77–80

[17] Bryuno A. D., O periodicheskikh obletakh Luny, Preprint No 91, IPM AN SSSR, M., 1978; Bruno A. D., “On periodic flybys of the moon”, Celestial Mech. Dynam. Astronom., 24:3 (1981), 255–268 | MR | Zbl

[18] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[19] Bryuno A. D., Raskhodimost veschestvennogo normalizuyuschego preobrazovaniya, Preprint No 62, IPM AN SSSR, M., 1979; Bruno A. D., “Divergence of the real normalizing transformation”, Selecta Math., 12:1 (1993), 13–23 | MR | Zbl

[20] Bryuno A. D., “O raskhodimosti veschestvennogo normalizuyuschego preobrazovaniya”, Matem. zametki, 31:3 (1982), 403–410 | MR | Zbl

[21] Bryuno A. D., “Bifurkatsiya periodicheskikh reshenii v simmetrichnom sluchae kratnoi pary mnimykh sobstvennykh znachenii”, Chislennoe reshenie obyknovennykh differentsialnykh uravnenii, ed. S. S. Filippov, IPM AN SSSR, M., 1988, 161–176 | MR

[22] Bryuno A. D., Ogranichennaya zadacha trekh tel, Nauka, M., 1990 | Zbl

[23] Bruno A. D., A local analysis of Hamiltonian systems, Preprint M/1990/33, I.H.E.S., Paris, 1990

[24] Bruno A. D., On divergence of normalizing transformation, Preprint M 72, I.H.E.S., Paris, 1990

[25] Bryuno A. D., “Pervye priblizheniya differentsialnykh uravnenii”, Dokl. AN, 335:4 (1994), 413–416 | MR

[26] Bryuno A. D., “Algoritmy nelineinogo analiza”, UMN, 51:5 (1996), 186

[27] Bruno A. D., “Algorithms of the local nonlinear analysis”, Nonlinear Anal., 30:7 (1997), 4683–4694 | DOI | MR | Zbl

[28] Bruno A. D., “Power geometry”, J. Dynamical Control Systems, 3:4 (1997), 471–492 | MR

[29] Bruno A. D., “Newton polyhedra and power transformations”, Math. Comput. Simulation, 45:5–6 (1998), 429–444 | DOI | MR

[30] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998 | Zbl

[31] Bruno A. D., “Power geometry and four applications”, J. Math. Sci., 95:5 (1999), 2483–2512 | DOI | MR | Zbl

[32] Bryuno A. D., “Meromorfnaya privodimost lineinoi treugolnoi sistemy ODU”, Dokl. AN, 371:5 (2000), 587–590 | MR

[33] Bruno A. D., Soleev A., The local uniformization of branches of an algebraic curve, Preprint M 34, I.H.E.S., Paris, 1990

[34] Bryuno A. D., Soleev A., “Lokalnaya uniformizatsiya vetvei prostranstvennoi krivoi i mnogogranniki Nyutona”, Algebra i analiz, 3:1 (1991), 67–101 | MR

[35] Bruno A. D., Soleev A., “The local uniformization of branches of a space curve”, Proc. of the 22 Annual Iranian Math. Conference, eds. M. R. R. Moghaddam and M. A. Pourabdollah, Ferdowsi University, Mashhad, 1991, 72–85 | Zbl

[36] Bruno A. D., Soleev A., “The local uniformization of branches of an algebraic curve”, Contemp. Math., 131:3 (1992), 361–378 | MR | Zbl

[37] Bryuno A. D., Soleev A., “Klassifikatsiya osobennostei funktsii polozheniya mekhanizmov”, Problemy mashinostroeniya i nadezhnosti mashin, 1994, no. 1, 102–109

[38] Bryuno A. D., Soleev A., “Pervye priblizheniya algebraicheskikh uravnenii”, Dokl. AN, 335:3 (1994), 277–278

[39] Bryuno A. D., Soleev A., “Lokalnyi analiz osobennosti odnoi obratimoi sistemy ODU”, UMN, 50:6 (1995), 169–170 | MR | Zbl

[40] Bryuno A. D., Soleev A., “Bifurkatsii reshenii odnoi obratimoi sistemy ODU”, Dokl. AN, 345:5 (1995), 590–592 | MR

[41] Bryuno A. D., Soleev A., “Gamiltonovy ukorocheniya sistemy Gamiltona”, Dokl. RAN, 349:2 (1996), 153–155 | MR | Zbl

[42] Bruno A. D., Soleev A., “Local analysis of a reversible ODE system and the Newton polyhedron”, Nonlinear Anal., 30:8 (1997), 4833–4838 | DOI | MR | Zbl

[43] Bryuno A. D., Soleev A., “Lokalnyi analiz osobennostei odnoi obratimoi sistemy ODU”, Trudy MMO, 59, 1998, 3–72 | MR | Zbl

[44] Bryuno A. D., Varin V. P., “Fraktalnaya struktura periodicheskikh kolebanii sputnika”, Materialy Mezhdunarodnoi konferentsii i Chebyshëvskikh chtenii, posvyaschennykh 175-letiyu so dnya rozhdeniya P. L. Chebyshëva, T. 1, MGU, M., 1996, 75–77

[45] Bruno A. D., Varin V. P., “The limit problems for the equation of oscillation of a satellite”, Celestial Mech. Dynam. Astronom., 67:1 (1997), 1–40 | DOI | MR | Zbl

[46] Bruno A. D., Varin V. P., “Singularities of oscillations of a satellite on highly eccentric elliptic orbits”, Nonlinear Anal., 30:4 (1997), 2541–2546 | DOI | MR | Zbl

[47] Bruno A. D., Varin V. P., “Generalized periodic solutions to the equation of oscillations of a satellite”, Z. Angew. Math. Mech., 79:2 (1999), 283–284 | MR

[48] Bryuno A. D., Vasilev M. M., “Asimptoticheskii analiz obtekaniya polubeskonechnoi plastiny metodom mnogogrannika Nyutona”, Materialy Mezhdunarodnoi konferentsii i Chebyshëvskikh chtenii, posvyaschennykh 175-letiyu so dnya rozhdeniya P. L. Chebyshëva, T. 1, MGU, M., 1996, 78–80

[49] Bruno A. D., Vasil'ev M. M., “Asymptotic analysis of the viscous fluid flow around a flat plate by the Newton polyhedra”, Nonlinear Anal., 30:8 (1997), 4765–4770 | DOI | MR | Zbl

[50] Bruno A. D., Vasil'ev M. M., “Newton polyhedron and Prandtl equation for a boundary layer”, Z. Angew. Math. Mech., 78:1 (1998), 309–310 | MR

[51] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | Zbl

[52] Danilov V. I., Khovanskii A. G., “Mnogogranniki Nyutona i algoritm vychisleniya chisel Khodzha–Delinya”, Izv. AN SSSR. Ser. matem., 50:5 (1986), 925–945 | MR

[53] Friberg J., “Multiquasielliptic polynomials”, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4), 21:2 (1967), 233–260 | MR

[54] Gelfond A. O., Khovanskii A. G., “Mnogogranniki Nyutona i vychety Grotendika”, Dokl. AN, 350:3 (1996), 298–300 | MR | Zbl

[55] Gindikin S. G., “Ob odnom klasse differentsialnykh operatorov, dopuskayuschikh dvustoronnyuyu energeticheskuyu otsenku”, UMN, 28:6 (1973), 199–200 | MR | Zbl

[56] Gindikin S. G., “Energeticheskie otsenki, svyazannye s mnogogrannikom Nyutona”, Trudy MMO, 31, 1974, 189–236 | MR | Zbl

[57] Gindikin S., Volevich L. R., The Method of Newton's Polyhedron in the Theory of Partial Differential Equations, Kluwer Acad. Publ., Dordrecht, 1992 | Zbl

[58] Gursa E., Kurs matematicheskogo analiza, T. 1. Ch. 2, GTTI, M.–L., 1933

[59] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983

[60] Ibragimov N. H. (Ed.), Lie Group Analysis of Differential Equations, V. 1, CRC Press, Boca Raton, FL, 1994

[61] Kazarnovskii B. Ya., “Mnogogranniki Nyutona i korni sistem eksponentsialnykh summ”, Funkts. analiz i ego pril., 18:4 (1984), 40–49 | MR | Zbl

[62] Khovanskii A. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz i ego pril., 12:1 (1978), 51–61 | MR

[63] Khovanskii A. G., “Mnogogranniki Nyutona i formula Eilera–Yakobi”, UMN, 33:6 (1978), 245–246 | MR

[64] Khovanskii A. G., “Mnogogranniki Nyutona”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983, 206–239

[65] Khovanskii A. G., “Mnogogrannik Nyutona, polinom Gilberta i summy konechnykh mnozhestv”, Funkts. analiz i ego pril., 29:4 (1992), 57–63 | MR

[66] Khovanskii A. G., “Mnogougolniki Nyutona, krivye na toricheskikh poverkhnostyakh i obraschenie teoremy Veilya”, UMN, 52:6 (1997), 318 | MR

[67] Khovanskii A. G., “Consistent partition of polytopes and polynomial measures”, Amer. Math. Soc. Transl. Ser. 2, 180 (1997), 157–166 | MR

[68] Khovanskii A. G., “Newton polyhedrons, a new formula for mixed volume, product of roots of a system of equations”, Proc. of the Arnoldfest (Fields Institute of Communications, 2000) | Zbl

[69] Khovanskii A. G., Geometriya mnogogrannikov i algebraicheskaya geometriya, , 1999 http://www.math.toronto.edu/askold/

[70] Klamkin M. S., “On the transformation of a class of boundary value problems into initial value problems for ordinary differential equations”, SIAM Rev., 4 (1962), 43–57 | DOI | MR

[71] Klamkin M. S., “Transformation of boundary value into initial value problems”, J. Math. Anal. Appl., 32:2 (1970), 308–330 | DOI | MR | Zbl

[72] Klokov Yu. A., Mikhailov A. P., Ad'yutov M. M., “Nelineinye matematicheskie modeli i neklassicheskie kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii”, Fundamentalnye osnovy matematicheskogo modelirovaniya, Nauka, M., 1997, 98–197 | Zbl

[73] Kostin V. M., “O nekotorykh invariantnykh resheniyakh uravneniya tipa Kortevega–de Vriza”, Zhurn. prikl. mekh. i tekhn. fiz., 1969, no. 4, 69–73 | MR

[74] Kouchnirenko A. G., “Polyedres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR

[75] Kushnirenko A. G., “Mnogogranniki Nyutona i chislo reshenii sistemy $k$ uravnenii s $k$ neizvestnymi”, UMN, 30:2 (1975), 266–267 | MR

[76] Kushnirenko A. G., “Mnogogranniki Nyutona i chisla Milnora”, Funkts. analiz i ego pril., 9:1 (1975), 74–75 | MR | Zbl

[77] Kushnirenko A. G., “Mnogogranniki Nyutona i teorema Bezu”, Funkts. analiz i ego pril., 10:3 (1976), 82–83 | MR | Zbl

[78] Mikhailov V. P., “O pervoi kraevoi zadache dlya nekotorykh poluogranichennykh operatorov”, Dokl. AN SSSR, 151:2 (1963), 282–285 | MR

[79] Mikhailov V. P., “O povedenii na beskonechnosti nekotorykh klassov mnogochlenov”, Dokl. AN SSSR, 164:3 (1965), 499–502 | MR

[80] Mikhailov V. P., “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Trudy MIAN, 91, 1967, 59–80 | MR

[81] Mikhailov V. P., “Pervaya kraevaya zadacha dlya kvaziellipticheskikh i kvaziparabolicheskikh uravnenii”, Trudy MIAN, 91, 1967, 81–99 | MR

[82] Na T. Y., Computational Methods in Engeneering Boundary Value Problems, Academic Press, New York, 1979

[83] Ovsyannikov L. V., “Gruppovye svoistva uravneniya Chaplygina”, Zhurn. prikl. mekh. tekhn. fiz., 1960, no. 3, 126–135

[84] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[85] Pukhlikov A. V., Khovanskii A. G., “Teorema Rimana–Rokha dlya integralov i summ kvazipolinomov po virtualnym mnogogrannikam”, Algebra i analiz, 4:4 (1992), 188–216 | MR | Zbl

[86] Sadov S. Yu., “O dinamicheskoi sisteme, voznikshei iz odnoi konechnomernoi approksimatsii uravneniya Shrëdingera”, Matem. zametki, 56:3 (1994), 118–133 | MR | Zbl

[87] Sadov S. Yu., “Normalnaya forma uravneniya kolebanii sputnika v singulyarnom sluchae”, Matem. zametki, 58:5 (1995), 785–789 | MR | Zbl

[88] Sadov S. Yu., “Metod usredneniya dlya uravneniya kolebanii sputnika pri ekstsentrisitete, blizkom k edinitse”, Materialy Mezhdunarodnoi konferentsii i Chebyshëvskikh chtenii, posvyaschennykh 175-letiyu so dnya rozhdeniya P. L. Chebyshëva, T. 2, MGU, M., 1996, 305–307 | MR

[89] Sadov S. Yu., “Singular normal form for a quasilinear ordinary differential equation”, Nonlinear Anal., 30:8 (1997), 4973–4978 | DOI | MR | Zbl

[90] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[91] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | Zbl

[92] Soleev A., “Algoritmy vychisleniya mnogogrannikov Nyutona”, Dokl. AN UzSSR, 1982, no. 5, 14–16 | MR | Zbl

[93] Soleev A., “Vydelenie vetvei analiticheskoi krivoi i mnogogranniki Nyutona”, Dokl. AN SSSR, 268:6 (1983), 1305–1307 | MR | Zbl

[94] Soleev A., Aranson A., Vychislenie mnogogrannika i normalnykh konusov ego granei, Preprint No 36, IPM RAN, M., 1994

[95] Soleev A., Bryuno A. D., “Mnogogrannik Nyutona i sistemy Gamiltona”, Vestn. MGU. Ser. 1. Matem., mekh., 1995, no. 6, 84–86 | MR | Zbl

[96] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[97] Varchenko A. N., “Mnogogrannik Nyutona i otsenki ostsilliruyuschikh integralov”, Funkts. analiz i ego pril., 10:3 (1976), 13–38 | MR | Zbl

[98] Varchenko A. N., Khovanskii A. G., “Asimptotika integralov po ischezayuschim tsiklam i mnogogrannik Nyutona”, Dokl. AN SSSR, 283:3 (1985), 521–525 | MR | Zbl

[99] Vasilev V. A., “Asimptotika eksponentsialnykh integralov, diagramma Nyutona i klassifikatsiya tochek minimuma”, Funkts. analiz i ego pril., 11:3 (1977), 1–11 | MR | Zbl

[100] Vasilev M. M., O poluchenii avtomodelnykh reshenii uravneniya dvizheniya vyazkogo teploprovodnogo gaza, Preprint No 95, IPM RAN, M., 1997

[101] Vasilev M. M., O raschete pogranichnogo sloya na polubeskonechnoi ploskoi plastine v statsionarnom potoke vyazkogo teploprovodnogo gaza, Preprint No 43, IPM RAN, M., 1999

[102] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | Zbl

[103] Vedenyapin V. V., Mingalev O. V., “Predstavleniya obschikh sootnoshenii kommutatsii. Asimptotika spektra trekh kvantovykh gamiltonianov”, Dokl. AN, 352:2 (1997), 155–158 | MR | Zbl

[104] Vedenyapin V. V., Orlov Yu. N., “Asimptotika spektra kvantovykh gamiltonianov”, Dokl. AN, 351:4 (1996), 444–447 | MR | Zbl

[105] Vedenyapin V. V., Orlov Yu. N., “O zakonakh sokhraneniya dlya polinomialnykh gamiltonianov i dlya diskretnykh modelei uravneniya Boltsmana”, TMF, 121:2 (1999), 307–315 | MR | Zbl

[106] Vinogradov A. M., Vorobev E. M., “Primenenie simmetrii dlya nakhozhdeniya tochnykh reshenii uravneniya Zabolotskoi–Khokhlova”, Akust. zhurn., 22:1 (1976), 23–29

[107] Volevich L. R., “Energeticheskii metod v zadache Koshi dlya differentsialnykh operatorov, korrektnykh po I. G. Petrovskomu”, Trudy MMO, 31, 1974, 147–188

[108] Volevich L. R., Gindikin S. G., “Ob odnom klasse gipoellipticheskikh polinomov”, Matem. sb., 75:3 (1968), 400–416 | MR | Zbl

[109] Volevich L. R., Gindikin S. G., “Mnogogrannik Nyutona i lokalnaya razreshimost lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Trudy MMO, 48, 1985, 211–262 | MR

[110] Uoker R., Algebraicheskie krivye, IL, M., 1952