A~spectral problem on graphs and $L$-functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 6, pp. 1197-1232

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a scattering process on multiloop infinite $(p+1)$-valent graphs (generalized trees). These graphs are one-dimensional connected simplicial complexes that are quotients of a regular tree with respect to free actions of discrete subgroups of the projective group $PGL(2,\mathbb Q_p)$. As homogeneous spaces, they are identical to $p$-adic multiloop surfaces. The Ihara–Selberg $L$-function is associated with a finite subgraph, namely, the reduced graph containing all loops of the generalized tree. We study a spectral problem and introduce spherical functions as the eigenfunctions of a discrete Laplace operator acting on the corresponding graph. We define the $S$-matrix and prove that it is unitary. We present a proof of the Hashimoto–Bass theorem expressing the $L$-function of any finite (reduced) graph in terms of the determinant of a local operator $\Delta (u)$ acting on this graph and express the determinant of the $S$-matrix as a ratio of $L$-functions, thus obtaining an analogue of the Selberg trace formula. The points of the discrete spectrum are also determined and classified using the $L$-function. We give a number of examples of calculations of $L$-functions.
@article{RM_1999_54_6_a2,
     author = {L. O. Chekhov},
     title = {A~spectral problem on graphs and $L$-functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1197--1232},
     publisher = {mathdoc},
     volume = {54},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - A~spectral problem on graphs and $L$-functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 1197
EP  - 1232
VL  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/
LA  - en
ID  - RM_1999_54_6_a2
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T A~spectral problem on graphs and $L$-functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 1197-1232
%V 54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/
%G en
%F RM_1999_54_6_a2
L. O. Chekhov. A~spectral problem on graphs and $L$-functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 6, pp. 1197-1232. http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/