A spectral problem on graphs and $L$-functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 6, pp. 1197-1232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with a scattering process on multiloop infinite $(p+1)$-valent graphs (generalized trees). These graphs are one-dimensional connected simplicial complexes that are quotients of a regular tree with respect to free actions of discrete subgroups of the projective group $PGL(2,\mathbb Q_p)$. As homogeneous spaces, they are identical to $p$-adic multiloop surfaces. The Ihara–Selberg $L$-function is associated with a finite subgraph, namely, the reduced graph containing all loops of the generalized tree. We study a spectral problem and introduce spherical functions as the eigenfunctions of a discrete Laplace operator acting on the corresponding graph. We define the $S$-matrix and prove that it is unitary. We present a proof of the Hashimoto–Bass theorem expressing the $L$-function of any finite (reduced) graph in terms of the determinant of a local operator $\Delta (u)$ acting on this graph and express the determinant of the $S$-matrix as a ratio of $L$-functions, thus obtaining an analogue of the Selberg trace formula. The points of the discrete spectrum are also determined and classified using the $L$-function. We give a number of examples of calculations of $L$-functions.
@article{RM_1999_54_6_a2,
     author = {L. O. Chekhov},
     title = {A~spectral problem on graphs and $L$-functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1197--1232},
     year = {1999},
     volume = {54},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - A spectral problem on graphs and $L$-functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 1197
EP  - 1232
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/
LA  - en
ID  - RM_1999_54_6_a2
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T A spectral problem on graphs and $L$-functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 1197-1232
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/
%G en
%F RM_1999_54_6_a2
L. O. Chekhov. A spectral problem on graphs and $L$-functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 6, pp. 1197-1232. http://geodesic.mathdoc.fr/item/RM_1999_54_6_a2/

[1] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series”, J. Indian Math. Soc., 20 (1956), 47–87 | MR | Zbl

[2] Colin De Verdière Y., “Spectre du laplacien et longueur des géodésiques fermées, II”, Compositio Math., 27 (1973), 159–184 | Zbl

[3] Hejhal D. A., “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43 (1976), 441–482 | DOI | MR | Zbl

[4] Cartier P., Voros A., “Une nouvelle interprétation de la formule des traces de Selberg”, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 143–148 | MR | Zbl

[5] Laks P. D., Fillips R. S., Teoriya rasseyaniya dlya avtomorfnykh funktsii, Mir, M., 1979

[6] Pavlov B. S., Faddeev L. D., “Teoriya rasseyaniya i avtomorfnye funktsii”, Zap. nauchn. semin. LOMI, 27, 1972, 161–193 | MR | Zbl

[7] Venkov A. B., “Spektralnaya teoriya avtomorfnykh funktsii, dzeta-funktsiya Selberga i nekotorye problemy analiticheskoi teorii chisel i matematicheskoi fiziki”, UMN, 34:3 (1979), 69–135 | MR | Zbl

[8] Ihara Y., “On discrete subgroup of the two by two projective linear group over $p$-adic field”, J. Math. Soc. Japan, 18:3 (1966), 219–235 | MR | Zbl

[9] Hashimoto K. I., “Zeta functions of finite graphs and representations of $p$-adic groups”, Adv. Stud. Pure Math., 15, 1989, 211–280 | MR | Zbl

[10] Hashimoto K. I., “On zeta and $L$-functions of finite graphs”, Internat. J. Math., 1:4 (1990), 381–396 | DOI | MR | Zbl

[11] Bass H., “The Ihara–Selberg zeta functions of a tree lattice”, Internat. J. Math., 3:6 (1992), 717–797 | DOI | MR | Zbl

[12] Ikhara Ya., “Diskretnye podgruppy $PL(2,k_p)$”, Matematika. Sb. perev., 12:5 (1968), 131–138

[13] Chekhov L., “$L$-functions in scattering on $p$-adic multiloop surfaces”, J. Math. Phys., 36:1 (1995), 414–425 | DOI | MR | Zbl

[14] Chekhov L. O., “Scattering on univalent graphs from $L$-function viewpoint”, TMF, 103 (1995), 489–506 | MR | Zbl

[15] Manin Yu. I., “$p$-adicheskie avtomorfnye funktsii”, Sovr. probl. matem., 3, VINITI, M., 1974, 5–92 | MR

[16] Serre J. P., Trees, Springer-Verlag, Berlin, 1980 | Zbl

[17] Gerritzen L., van der Put M., Schottky Groups and Mumford Curves, Lecture Notes in Math., 817, Springer-Verlag, Berlin, 1980 | Zbl

[18] Chekhov L. O., Mironov A. D., Zabrodin A. V., “Multiloop calculations in $p$-adic string theory and Bruhat–Tits trees”, Comm. Math. Phys., 125 (1989), 675–711 | DOI | MR | Zbl

[19] Penner R. C., “The decorated Teichmüller space of Riemann surfaces”, Comm. Math. Phys., 113 (1988), 299–339 | DOI | MR

[20] Fock V. V., Combinatorial description of the moduli space of projective structures, E-print hep-th/9312193

[21] Chekhov L. O., Fok V. V., “Kvantovye modulyarnye gruppy, sootnoshenie pyatiugolnika i geodezicheskie”, Trudy MIAN, 226, 1999, 164–179

[22] Fok V. V., Chekhov L. O., “Kvantovye prostranstva Teikhmyullera”, TMF, 120 (1999), 511–528 | MR

[23] Novikov S. P., “Operator Shredingera na grafakh i topologiya”, UMN, 52:6 (1997), 177–178 | MR | Zbl

[24] Novikov S. P., “Schrödinger operators on graphs and symplectic geometry”, Special Issue in honour of V. I. Arnold, on the occasion of his 60th birthday, Fields Institute, Toronto, 1999

[25] Dolbilin N. P., Zinovev Yu. M., Shtanko M. A., Shtogrin M. I., “Kombinatornyi metod Katsa–Uorda”, UMN, 53:6 (1998), 247–248 | MR | Zbl

[26] Dolbilin N. P., Zinovev Yu. M., Mischenko A. S., Shtanko M. A., Shtogrin M. I., “Determinant Katsa–Uorda”, Trudy MIAN, 225, 1999, 177–194 | MR | Zbl

[27] Venkov A. B., Nikitin A. M., “Formula sleda Selberga, grafy Ramanudzhana i nekotorye problemy matematicheskoi fiziki”, Algebra Anal., 5:3 (1993), 1–76 | MR | Zbl

[28] Vaksman L. L., Korogodskii L. I., Harmonic analysis on quantum hyperboloids, Preprint 90-27, In-t teor. fiz., Kiev, 1990

[29] Freund P. G. O., “Scattering on $p$-adic and on adelic symmetric spaces”, Phys. Lett. B, 257 (1991), 119–125 | DOI | MR

[30] Freund P. G. O., Zabrodin A., “A hierarchic array of integrable models”, J. Math. Phys., 34:12 (1993), 5832–5842 | DOI | MR | Zbl

[31] Sarnak P., Modulyarnye formy i ikh prilozheniya, Fazis, M., 1998

[32] Pizer A., “Ramanujan graphs and Hecke operators”, Bull. Amer. Math. Soc., 23:1 (1990), 127–157 | DOI | MR

[33] Erdös P., “Graph theory and probability”, Canad. J. Math., 11 (1959), 34–38 | MR | Zbl

[34] Romanov R. V., Rudin H. E., Scattering on the Bruhat–Tits tree. II: $p$-adic authomorphic functions, Preprint, SPbGU, S.-Peterburg, 1994

[35] Harish-Chandra, “Spherical functions on a semisimple Lie group. I; II”, Amer. J. Math., 80 (1958), 241–310 ; 553–613 | DOI | MR | Zbl

[36] Gindikin S. G., Karpelevich F. I., “Mera Plansherelya rimanovykh simmetrichnykh prostranstv nepolozhitelnoi krivizny”, Dokl. AN SSSR, 145 (1962), 252–255 | MR

[37] Stark H. M., Terras A. A., “Zeta functions of finite graphs and coverings”, Adv. Math., 121 (1996), 124–165 | DOI | MR | Zbl

[38] Foata D., Zeilberger D., A combinatorial proof of Bass' evaluations of the Ihara–Selberg zeta function for graphs, E-print math.CO/9806037

[39] Romanov R. V., Rudin H. E., “Scattering on $p$-adic graphs”, Comput. Math. Appl., 34:5–6 (1997), 587–597 | DOI | MR | Zbl

[40] Chekhov L., “$L$-functions in scattering on generalized Cayley trees”, J. Tech. Phys., 37 (1996), 301–305 | MR

[41] Kashaev R. M., Quantization of Teichmüller spaces and the quantum dilogarithm, E-print q-alg/9705021

[42] Strebel K., Quadratic Differentials, Springer-Verlag, Berlin, 1984

[43] Parry W., Pollicott M., “An analogue of the prime number theorem for closed orbits of Axiom A flows”, Ann. Math., 118 (1983), 573–591 | DOI | MR | Zbl

[44] Bedford T., Keane M., Series C. (Eds.), Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford Univ. Press, Oxford, 1991 | Zbl

[45] Epstein C. L., “Some exact trace formulas”, Adv. Stud. Pure Math., 21, 1992, 127–140 | Zbl

[46] McShane G., “Simple geodesics and a Series constant over Teichmüller space”, Invent. Math., 132 (1998), 607–632 | DOI | MR | Zbl

[47] Novikov S. P., Shvarts A. S., “Diskretnye lagranzhevy sistemy na grafakh. Simplekto-topologicheskie svoistva”, UMN, 54:1 (1999), 257–258 | MR | Zbl

[48] Akkermans E., Comtet A., Desbois J., Montambaux G., Texier C., Spectral determinants on quantum graphs, E-print cond-mat/9911183