Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 6, pp. 1091-1147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The survey is devoted to various aspects of the theory of real algebraic curves. The involution defined by complex conjugation induces an antiholomorphic involution $\tau\colon P\to P$ on the complexification $P$ of a real curve. This involution acts on all structures related to the Riemann surface $P$, namely, on vector bundles, Jacobians, Prymians, and so on. The greater part of the survey is devoted to finding topological invariants and studying the corresponding moduli spaces. Statements of these problems were inspired by applications of the theory of real curves to problems in mathematical physics (theory of solitons, string theory, and so on).
@article{RM_1999_54_6_a0,
     author = {S. M. Natanzon},
     title = {Moduli of real algebraic surfaces, and their superanalogues. {Differentials,} spinors, and {Jacobians} of real curves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1091--1147},
     year = {1999},
     volume = {54},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1999_54_6_a0/}
}
TY  - JOUR
AU  - S. M. Natanzon
TI  - Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 1091
EP  - 1147
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1999_54_6_a0/
LA  - en
ID  - RM_1999_54_6_a0
ER  - 
%0 Journal Article
%A S. M. Natanzon
%T Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 1091-1147
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1999_54_6_a0/
%G en
%F RM_1999_54_6_a0
S. M. Natanzon. Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 6, pp. 1091-1147. http://geodesic.mathdoc.fr/item/RM_1999_54_6_a0/

[1] Alling N. L., Greenleaf N., Foundations of the Theory of Klein Surfaces, Lecture Notes in Math., 219, Springer-Verlag, Berlin, 1971 | Zbl

[2] Atiyah M. F., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | MR | Zbl

[3] Baker H. F., Abel's Theorem and the Allied Theory Including the Theory of Theta Functions, Cambridge, 1897

[4] Baranov A. M., Manin Yu. I., Frolov I. V., Schwarz A. S., “A superanalog of the Selberg trace formula and multiloop contributions for fermionic strings”, Comm. Math. Phys., 111 (1987), 373–392 | DOI | MR | Zbl

[5] Bobenko A. I., Uniformizatsiya i konechnozonnoe integrirovanie, Preprint R-10-86, LOMI, L., 1986

[6] Bobenko A. I., “Uniformizatsiya Shottki i konechnozonnoe integrirovanie”, Dokl. AN SSSR, 295:2 (1987), 268–272 | Zbl

[7] Bujalance E., Costa A. F., Natanzon S., Singerman D., “Involutions of compact Klein surfaces”, Math. Z., 211 (1992), 461–478 | DOI | MR | Zbl

[8] Burnside W., “On a class of automorphic functions”, Proc. London Math. Soc., 23 (1892), 49–88 | DOI

[9] Carey A. L., Hannabuss K. C., “Infinite dimensional groups and Riemann surface field theories”, Comm. Math. Phys., 176 (1996), 321–351 | DOI | MR | Zbl

[10] Cherednik I. V., “Ob usloviyakh veschestvennosti v “konechnozonnom integrirovanii””, Dokl. AN SSSR, 252:5 (1980), 1104–1108 | MR | Zbl

[11] Comessatti A., “Sulle variata abeliane reali”, Ann. Math. Pura Appl. (4), 2 (1925), 67–102 ; 3 (1926), 27–71 | DOI | DOI

[12] Dubrovin B. A., “Teoriya operatorov i veschestvennaya algebraicheskaya geometriya”, Globalnyi analiz i matem. fizika, Voronezh, 1987, 42–59; Lecture Notes in Math., 1334, 1988, 42–59

[13] Dubrovin B. A., Natanzon S. M., “Veschestvennye dvukhzonnye resheniya uravneniya Sine–Gordon”, Funkts. analiz i ego pril., 16:1 (1982), 27–43 | MR | Zbl

[14] Dubrovin B. A., Natanzon S. M., “Veschestvennye teta-funktsionalnye resheniya uravnenii Kadomtseva–Petviashvili”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 267–286 | MR | Zbl

[15] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986

[16] Earle C. J., “On the moduli of closed Riemann surfaces with symmetries”, Ann. of Math. Stud., 66, 1971, 119–130 | MR

[17] Frike F., Klein F., Vorlesungen über die Theorie der automorphen Funktionen, V. 1, Teubner, Leipzig, 1897; V. 2, 1912; Reprinted, Johnson Reprint Corp., New York; Teubner Verlagsgesellschaft, Stuttgart, 1965

[18] Falqui G., Reina C., “$N=2$ super Riemann surfaces and algebraic geometry”, J. Math. Phys., 31:4 (1990), 948–952 | DOI | MR | Zbl

[19] Fay J., Theta-Functions on Riemann Surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin, 1973 | Zbl

[20] Gross B. H., Harris J., “Real algebraic curves”, Ann. Sci. École Norm. Sup. (4), 14:2 (1981), 157–182 | MR | Zbl

[21] Harnach A., “Über die Vieltheiligkeit der ebene algebraischen Kurven”, Math. Ann., 10 (1876), 189–199 | DOI | MR

[22] Hurwitz A., “Über die Fourierschen Konstanten integrierbarer Funktionen”, Math. Ann., 57 (1903), 425–446 | DOI | MR

[23] Jaffe A., Klimek S., Lesniewski L., “Representations of the Heigenberg algebra on a Riemann surface”, Comm. Math. Phys., 126:2 (1990), 421–433 | DOI | MR

[24] Karimipour V., Mostafazadeh A., “Lattice topological field theory on nonorientable surfaces”, J. Math. Phys., 38:1 (1997), 49–66 | DOI | MR | Zbl

[25] Klein F., Riemann Flächen (lit.): Vorles., B. 1, 2, Göttingen, 1892; Neuedruck, 1906

[26] Kravetz S., “On the geometry of Teichmüller spaces and the structure of their modular groups”, Ann. Acad. Sci. Fenn. Ser. A I Math., 278 (1959), 1–35 | MR

[27] Krichever I. M., Novikov S. P., “Virasoro–Gelfand–Fuks type algebras, Riemann surfaces, operator's theory of closed strings”, J. Geom. Phys., 5:4 (1988), 631–661 | DOI | MR | Zbl

[28] Macbeath A. M., “The classification of non-euclidean plane crystallographie groups”, Canad. J. Math., 19:6 (1967), 1192–1205 | MR | Zbl

[29] Manin Yu. I., “Superalgebraicheskie krivye i kvantovye struny”, Trudy MIAN, 183, 1990, 126–138 | MR

[30] Mumford D., “Thera characteristics of an algebraic curve”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 181–192 | MR | Zbl

[31] Natanzon S. M., Invariantnye pryamye fuksovykh grupp i moduli veschestvennykh algebraicheskikh krivykh, Diss. $\dots$ kand. fiz.-matem. nauk, TsEMI, M., 1974

[32] Natanzon S. M., “Moduli veschestvennykh algebraicheskikh krivykh”, UMN, 30:1 (1975), 251–252 | MR | Zbl

[33] Natanzon S. M., “Prostranstva modulei veschestvennykh krivykh”, Trudy MMO, 37, 1978, 219–253 | MR | Zbl

[34] Natanzon S. M., “Primiany veschestvennykh krivykh i ikh prilozheniya k effektivizatsii operatorov Shredingera”, Funkts. analiz i ego pril., 23:1 (1989), 41–55 | MR

[35] Natanzon S. M., “Kleinovy poverkhnosti”, UMN, 45:6 (1990), 47–89 | MR

[36] Natanzon S. M., “Kleinovy superpoverkhnosti”, Matem. zametki, 48:2 (1990), 72–82 | MR

[37] Natanzon S. M., “Differentsialnye uravneniya na teta-funktsii Prima. Kriterii veschestvennosti dvumernykh konechnozonnykh potentsialnykh operatorov Shredingera”, Funkts. analiz i ego pril., 26:1 (1992), 17–26 | MR | Zbl

[38] Natanzon S., “Moduli spaces of Riemann and Klein supersurfaces”, Developments in Mathematics: The Moscow School, eds. V. Arnold, M. Monastyrsky, Chapman Hall, London, 1993, 100–130 | MR | Zbl

[39] Natanzon S. M., “Moduli spaces of Riemann $N=1$ and $N=2$ supersurfaces”, J. Geom. Phys., 12:1 (1993), 35–54 | DOI | MR | Zbl

[40] Natanzon S. M., “Topologiya dvumernykh pokrytii i meromorfnye funktsii na veschestvennykh i kompleksnykh krivykh”, Trudy semin. vektorn. tenzorn. anal., 23 (1988), 79–103 ; 24 (1991), 104–132 | Zbl | MR | Zbl

[41] Natanzon S. M., “Klassifikatsiya par funktsii Arfa na orientiruemykh i neorientiruemykh poverkhnostyakh”, Funkts. analiz i ego pril., 28:3 (1994), 35–46 | MR | Zbl

[42] Natanzon S. M., “Real nonsingular finite zone solutions of soliton equations”, Amer. Math. Soc. Transl. (2), 170 (1995), 153–183 | MR | Zbl

[43] Natanzon S. M., “Trigonometricheskie tenzory na algebraicheskikh krivykh proizvolnogo roda. Analog teoremy Shturma–Gurvitsa”, UMN, 50:6 (1995), 199–200 | MR | Zbl

[44] Natanzon S. M., “Spinors and differentials of real algebraic curves. Topology of real algebraic varieties and related topics”, Amer. Math. Soc. Transl. (2), 173 (1996), 179–186 | MR | Zbl

[45] Natanzon S. M., “Differential equations for Riemann and Prym theta-functions”, J. Math. Sci., 82:6 (1996), 3821–3823 | DOI | MR | Zbl

[46] Natanzon S. M., “Prostranstvo modulei veschestvennykh algebraicheskikh superkrivykh s $N=2$”, Funkts. analiz i ego pril., 30:4 (1996), 19–30 | MR | Zbl

[47] Natanzon S. M., “Moduli rimanovykh poverkhnostei, prostranstva tipa Gurvitsa i ikh superanalogi”, UMN, 54:1 (1999), 61–116 | MR | Zbl

[48] Seppälä M., “Teichmüller spaces of Klein surfaces”, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 1978, no. 15 | Zbl

[49] Vajsburd L., Radul A., “Non-orientable strings”, Comm. Math. Phys., 135 (1991), 413–420 | DOI | MR | Zbl

[50] Vinnikov V., “Self-adjoint determinantal representations of real plane curves”, Math. Ann., 296 (1993), 453–478 | DOI | MR

[51] Weichold G., “Über symmetrische Riemann Flächen und die Periodizitats modulu der zugehorigen Abelchen Normalintegale erster Gattung”, Z. Math. Phys., 28 (1883), 321–351