The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 947-1014 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a wide class of boundary-value problems for which the application of elliptic theory can be reduced to elementary algebraic operations and which is characterized by the following polynomial property: the sesquilinear form corresponding to the problem degenerates only on some finite-dimensional linear space $\mathscr P$ of vector polynomials. Under this condition the boundary-value problem is elliptic, and its kernel and cokernel can be expressed in terms of $\mathscr P$. For domains with piecewise-smooth boundary or infinite ends (conic, cylindrical, or periodic), we also present fragments of asymptotic formulae for the solutions, give specific versions of general conditional theorems on the Fredholm property (in particular, by modifying the ordinary weighted norms), and compute the index of the operator corresponding to the boundary-value problem. The polynomial property is also helpful for asymptotic analysis of boundary-value problems in thin domains and junctions of such domains. Namely, simple manipulations with $\mathscr P$ permit one to find the size of the system obtained by dimension reduction as well as the orders of the differential operators occurring in that system and provide complete information on the boundary layer structure. The results are illustrated by examples from elasticity and hydromechanics.
@article{RM_1999_54_5_a2,
     author = {S. A. Nazarov},
     title = {The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {947--1014},
     year = {1999},
     volume = {54},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1999_54_5_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 947
EP  - 1014
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1999_54_5_a2/
LA  - en
ID  - RM_1999_54_5_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 947-1014
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1999_54_5_a2/
%G en
%F RM_1999_54_5_a2
S. A. Nazarov. The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 947-1014. http://geodesic.mathdoc.fr/item/RM_1999_54_5_a2/

[1] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. 1; 2”, Comm. Pure Appl. Math., 12:4 (1959), 623–723 ; 17:1 (1964), 35–92 | DOI | MR | DOI | MR | Zbl

[2] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Duglisa–L. Nirenberga. 1; 2”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 665–706 ; РўСЂСѓРґС‹ РњР�РђРќ, 92, 1966, 233–297 | MR | MR | Zbl

[3] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Nauka, M., 1964 | Zbl

[4] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161

[5] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[6] Roitberg Ya. A., Sheftel Z. G., “Teorema o gomeomorfizmakh dlya ellipticheskikh sistem i ee prilozheniya”, Matem. sb., 78:3 (1969), 446–472 | MR | Zbl

[7] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965

[8] Roitberg Ya. A., Elliptic Boundary Value Problems in the Spaces of Distributions, Kluwer, Dordrecht, 1996 | Zbl

[9] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988

[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | Zbl

[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[12] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | Zbl

[13] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy MMO, 16, 1967, 209–292 | MR | Zbl

[14] Kondratev V. A., “O gladkosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v kusochno-gladkoi oblasti”, Differents. uravneniya, 6:10 (1970), 1831–1843 | MR | Zbl

[15] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[16] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl

[17] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, UMN, 38:2 (1983), 3–76 | MR | Zbl

[18] Grisvard P., Elliptic Problems is Non-Smooth Domains, Pitman, London, 1985 | Zbl

[19] Dauge M., Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Math., 1341, Springer-Verlag, Berlin, 1988 | Zbl

[20] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[21] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic Boundary Value Problems in Domains with Point Singularities, Amer. Math. Soc., Providence, 1997 | Zbl

[22] Mazya V. G., Plamenevskii B. A., “Ob ellipticheskikh kraevykh zadachakh v oblastyakh s kusochno gladkoi granitsei”, Trudy simp. po mekh. sploshn. sred i rodstvennym probl. analiza, T. 1, Metsniereba, Tbilisi, 1973, 171–181

[23] Mazya V. G., Plamenevskii B. A., “Ellipticheskie kraevye zadachi na mnogoobraziyakh s osobennostyami”, Problemy matem. analiza, no. 6, Izd-vo LGU, L., 1977, 85–142

[24] Mazya V. G., Plamenevskii B. A., “$L_p$-otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami”, Trudy MMO, 37, 1978, 49–93 | MR | Zbl

[25] Nazarov S. A., Shoikhet B. A., “Koertsitivnye otsenki v vesovykh prostranstvakh reshenii zadach teorii uprugosti i teorii polzuchesti v oblasti s dvumernoi treschinoi”, Izv. AN ArmSSR. Mekh., 36:4 (1983), 12–25 | MR | Zbl

[26] Nazarov S. A., “Otsenki vblizi rebra resheniya zadachi Neimana dlya ellipticheskoi sistemy”, Vestnik LGU, 1988, no. 1, 37–42 | MR | Zbl

[27] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblastyakh s kusochno gladkoi granitsei”, Trudy LMO, 1 (1990), 174–211 | MR

[28] Mazya V. G., Plamenevskii B. A., “Vesovye prostranstva s neodnorodnymi normami i kraevye zadachi v oblastyakh s konicheskimi tochkami”, Elliptishe Differentialgleichung, Meeting (Rostock, 1977), Wilhelm-Pieck-Univ., Rostock, 1978, 161–189

[29] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1: Zadacha v konuse”, Sib. matem. zhurn., 22:4 (1981), 142–163 ; “РњРμтод Вишика–ЛюстРμСЂРЅРёРєР° для эллиптичРμСЃРєРёС... РєСЂР°РμРІС‹С... задач РІ областяС... СЃ РєРѕРЅРёС‡РμСЃРєРёРјРё точками. 3: Задача СЃ вырождРμРЅРёРμРј РІ РєРѕРЅРёС‡РμСЃРєРѕРNo точкРμ”, 25:6 (1984), 106–115 | MR | Zbl | MR | Zbl

[30] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl

[31] Nazarov S. A., Plamenevsky B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994

[32] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, no. 16, Izd-vo SPbGU, SPb, 1997, 167–192

[33] Nazarov S. A., “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zap. nauch. semin. POMI, 249, 1997, 212–231

[34] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, UMN, 43:5 (1988), 55–98 | MR

[35] Kondratiev V. A., Oleinik O. A., “Hardy's and Korn's type inequalities and their applications”, Rend. Mat. Appl. (7), 10 (1990), 641–666 | MR | Zbl

[36] Solonnikov V. A., “Stokes and Navier–Stokes equations in domains with noncompact boundaries”, Nonlinear PDE and Their Appl. Collège de France Seminar, 4 (1989), 240–349

[37] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestnik SPbGU, 1992, no. 8, 19–24 | MR

[38] Nazarov S. A., “Vesovye neravenstva Korna na paraboloidalnykh oblastyakh”, Matem. zametki, 6:5 (1997), 751–765

[39] Van Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967 | Zbl

[40] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, Izd-vo TGU, Tbilisi, 1981 | Zbl

[41] Leguillon D., Sanches-Palencia E., Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987 | Zbl

[42] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[43] Mazja W. G., Nasarow S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, V. 1, 1990; V. 2, Akademie-Verlag, Berlin, 1991

[44] Nazarov S. A., “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestnik LGU, 1982, no. 7, 65–68 | Zbl

[45] Leora S. N., Nazarov S. A., Proskura A. V., “Vyvod predelnykh uravnenii dlya ellipticheskikh zadach v tonkikh oblastyakh pri pomoschi EVM”, Zhurn. vychisl. matem. i matem. fiziki, 26:7 (1986), 1032–1048 | MR | Zbl

[46] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[47] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978

[48] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | Zbl

[49] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984

[50] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1991

[51] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | Zbl

[52] Roitberg I. Ya., Roitberg Ya. A., “Formula Grina dlya obschikh ellipticheskikh granichnykh zadach dlya sistem struktury Duglisa–Nirenberga”, Dokl. RAN, 359:6 (1998), 739–743 | MR | Zbl

[53] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977

[54] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1972

[55] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Problemy matem. analiza, no. 17, Izd-vo SPbGU, SPb, 1997, 101–152

[56] Parton V. Z., Kudryavtsev B. A., Elektromagnitouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988

[57] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[58] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[59] Novotny A., “Viscous multipolar Fluids. Physical background and mathematical theory”, Fortschr. Phys., 40:5 (1992), 445–517 | DOI | MR

[60] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ellipticheskie kraevye zadachi v oblastyakh tipa vneshnosti pika”, Problemy matem. analiza, no. 9, Izd-vo LGU, L., 1984, 105–148 | MR

[61] Sternin B. Yu., “Ellipticheskie i parabolicheskie zadachi na mnogoobraziyakh s granitsei, sostoyaschei iz komponent razlichnoi razmernosti”, Trudy MMO, 15, 1966, 346–382 | MR | Zbl

[62] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981

[63] Costabel M., Dauge M., “Computation of corner singularities in linear elasticity”, Lecture Notes in Pure Appl. Math., 167, 1994, 59–68 | MR

[64] Nazarov S. A., Plamenevskii B. A., “Ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Matem. sb., 183:10 (1992), 13–44

[65] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | Zbl

[66] Nikishkin V. A., “Osobennosti reshenii zadachi Dirikhle dlya uravneniya vtorogo poryadka v okrestnosti rebra”, Vestnik MGU. Ser. matem., mekh., 1979, no. 2, 51–62 | MR | Zbl

[67] Maz'ja V. G., Rosmann J., “Über die Asymptotik der Lösungen elliptisher Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR

[68] Nazarov S. A., “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v vesovykh funktsionalnykh prostranstvakh”, Matem. sb., 137:2 (1988), 224–241

[69] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186

[70] Nazarov S. A., “Fredgolmovost operatora kraevoi zadachi s usloviyami na rebre granitsy tipa uslovii Chaplygina–Zhukovskogo–Kutta”, Funkts. analiz i ego pril., 31:3 (1997), 44–56 | MR | Zbl

[71] Nazarov S. A., “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh razlozhenii”, Trudy SPbMO, 5 (1996), 112–183

[72] Nazarov S. A., Polyakova O. R., “Kriterii razrusheniya, asimptoticheskie usloviya v vershinakh treschin i samosopryazhennye rasshireniya operatora Lame”, Trudy MMO, 57, 1996, 16–75

[73] Nazarov S. A., “On the two-dimensional aperture problem for Navier–Stokes equations”, C. R. Acad. Sci. Paris. Sér. 1, 323 (1996), 699–703 | MR | Zbl

[74] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in extensions”, J. Appl. Mech., 19:4 (1952), 526–528

[75] Solonnikov V. A., “On the Stokes equations in domains with nonsmooth boundaries and on a viscous incompressible flow with a free surface”, Nonlinear PDE and Their Appl. Collège de France Semin., 3 (1980/81), 340–423

[76] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob osobennostyakh reshenii zadachi Dirikhle vo vneshnosti tonkogo konusa”, Matem. sb., 122:4 (1983), 435–456 | MR

[77] Mazya V. G., Nazarov S. A., “Ob osobennostyakh reshenii zadachi Neimana v konicheskoi tochke”, Sib. matem. zhurn., 30:3 (1989), 52–63 | MR | Zbl

[78] Movchan N. V., Nazarov S. A., “Asimptotika pokazatelei singulyarnostei dlya uglovykh v plane treschin”, Vestnik LGU, 1990, no. 15, 34–38 | MR

[79] Kozlov V. A., Mazya V. G., “O spektre operatornogo puchka, porozhdennogo zadachei Dirikhle v konuse”, Matem. sb., 182:5 (1991), 638–660

[80] Kozlov V. A., Mazya V. G., “Spektralnye svoistva operatornykh puchkov, porozhdennykh ellipticheskimi kraevymi zadachami v konuse”, Funkts. analiz i ego pril., 22:2 (1988), 38–46 | MR | Zbl

[81] Kozlov V. A., Maz'ya V. G., Schwab C., “On singularities of solutions to the Dirichlet problem of hydrodynamics near the vertex of a cone”, J. Reine Angew. Math., 456 (1994), 65–97 | MR | Zbl

[82] Kozlov V. A., Maz'ya V. G., “Singularities in solutions to mathematical physics problems in nonsmooth domains”, Partial Differential Equations and Functional Analysis, In memory of P. Grisvard. Proceedings of conference (1994), Birkhäuser, Basel, 1996, 174–206 | Zbl

[83] Pasy A., “Asymptotic expansion of solution of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR

[84] Nazarov S. A., “Vesovye funktsii i invariantnye integraly”, Vychislitelnaya mekhanika deformiruemogo tverdogo tela, T. 1, 1990, 17–31

[85] Kamotskii I. V., Nazarov S. A., “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Trudy SPbMO, 6 (1998), 151–212 | MR

[86] Nazarov S. A., “Treschina na styke anizotropnykh tel. Singulyarnosti napryazhenii i invariantnye integraly”, Prikl. matem. mekh., 62:3 (1998), 489–502 | MR

[87] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965

[88] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977

[89] Karpeshina Yu. E., Pavlov B. S., “Vzaimodeistvie nulevogo radiusa dlya bigarmonicheskogo i poligarmonicheskogo uravnenii”, Matem. zametki, 40:1 (1986), 49–59 | MR | Zbl

[90] Berezin F. A., Faddeev L. D., “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[91] Pavlov B. S., “Teoriya rasshirenii i yavnoreshaemye modeli”, UMN, 42:6 (1987), 99–132 | MR

[92] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo LGU, L., 1975

[93] Kanaun S. K., Levin V. M., Metod effektivnogo polya v mekhanike kompozitsionnykh materialov, Izd-vo PGU, Petrozavodsk, 1993 | Zbl

[94] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 101–112 | MR | Zbl

[95] Nazarov S. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach s periodicheskimi koeffitsientami”, Vestnik LGU, 1985, no. 15, 16–22 | Zbl

[96] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl

[97] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979

[98] Arutyunyan N. Kh., Movchan A. B., Nazarov S. A., “Povedenie reshenii zadach teorii uprugosti v neogranichennykh oblastyakh s paraboloidalnymi i tsilindricheskimi vklyucheniyami ili polostyami”, Uspekhi mekhaniki, 1987, no. 4, 3–91 | MR

[99] Bayada C., Chambat M., “The transition between the Stokes equations and the Reynolds equation: a mathematical proof”, Appl. Math. Optim., 14 (1986), 73–93 | DOI | MR | Zbl

[100] Nazarov S. A., “Asimptotika resheniya zadachi Nave–Stoksa o techenii tonkogo sloya zhidkosti”, Sib. matem. zhurn., 31:2 (1990), 131–144 | MR | Zbl

[101] Nazarov S. A., Piletskas K. I., “Reinoldsovo techenie zhidkosti v tonkom trekhmernom kanale”, Litov. matem. sb., 30:4 (1990), 772–783 | MR | Zbl

[102] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Fizmatgiz, M., 1963

[103] Ambartsumyan S. A., Teoriya anizotropnykh plastin, Nauka, M., 1987

[104] Zorin I. S., “Operatornoe predstavlenie sistemy Lame i predelnye kraevye zadachi teorii tonkikh plit”, Vestnik LGU, 1987, no. 22, 108 | MR

[105] Sanchez-Palencia E., “Passage à la limite de l'élasticité tridimensionelle à la théorie asymptotique des coques minces”, C. R. Acad. Sci. Paris. Sér. 2, 311 (1990), 909–916 | MR | Zbl

[106] Nazarov S. A., “Asimptotika reshenii ellipticheskoi kraevoi zadachi v tonkoi oblasti”, Problemy matem. analiza, no. 11, Izd-vo LGU, L., 1990, 191–208

[107] Shoikhet B. A., “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, Prikl. matem. mekh., 37:5 (1973), 913–924 | MR

[108] Cioranescu D., Oleinik O. A., Tronel G., “Korn's inequalities for frame structures and junctions with sharp estimates for the constants”, Asymptotic Anal., 8 (1994), 1–14 | MR | Zbl

[109] Friedrichs K. O., Dressler R. F., “A boundary-layer theory for elastic plates”, Comm. Pure Appl. Math., 14:1 (1961), 1–33 | DOI | MR | Zbl

[110] Goldenveizer A. L., Teoriya uprugikh obolochek, Nauka, M., 1965

[111] Gregery R. D., Wan F. V., “Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory”, J. Elasticity, 14:1 (1984), 27–64 | DOI | MR

[112] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikl. matem. mekh., 53:4 (1989), 642–650 | MR | Zbl

[113] Dauge M., Gruais I., “Développement asymptotique d'ordre arbitraire pour une plaque élastique mince encatrée”, C. R. Acad. Sci. Paris. Sér. 1, 321 (1995), 375–380 | MR | Zbl

[114] Dauge M., Djurdjevic I., Rössle A., “Full asymptotic expansions for thin elastic free plates”, C. R. Acad. Sci. Paris. Sér. 1, 326 (1998), 1243–1248 | MR | Zbl

[115] Ciarlet P. G., Plates junctions in elastic microstructures, Masson, Paris, 1990 | Zbl

[116] Le Dret H., Problèmes variationnels dans les multi-domaines, modelisation des jonctions et applications, Masson, Paris, 1991 | Zbl

[117] Panassenko G. P., “Asymptotic analysis of bar systems. 1; 2”, Russian J. Math. Phys., 2:3 (1994), 325–353 ; 4:1 (1996), 37–116 | MR

[118] Argatov I. I., Nazarov S. A., “Junction problem of shashlik (skewer) type”, C. R. Acad. Sci. Paris. Sér. 1, 316 (1993), 1329–1334 | MR | Zbl

[119] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Asymptotic analysis of a mixed boundary value problem in a multi-structure”, Asymptotic Anal., 8 (1994), 105–143 | MR | Zbl

[120] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei”, Trudy semin. im. I. G. Petrovskogo, 18, Izd-vo MGU, M., 1995, 3–78 | Zbl

[121] Nazarov S. A., “Junction problems of bee-on-ceiling type in the theory of anisotropic elasticity”, C. R. Acad. Sci. Paris. Sér. 1, 320 (1995), 1419–1424 | MR | Zbl

[122] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Asymptotic representation of elastic fields in a multi-structure”, Asymptotic Anal., 11 (1995), 343–415 | MR | Zbl

[123] Argatov I. I., Nazarov S. A., “Asimptoticheskii analiz na soedineniyakh oblastei razlichnykh predelnykh razmernostei. Telo, pronzennoe tonkim sterzhnem”, Izv. RAN. Ser. matem., 60:1 (1996), 3–36 | MR | Zbl

[124] Nazarov S. A., “Asimptotika reshenii zadachi teorii uprugosti dlya trekhmernogo tela s tonkimi otrostkami”, Dokl. RAN, 352:4 (1997), 458–461 | MR | Zbl

[125] Melnik T. A., Nazarov S. A., “Asimptotika resheniya spektralnoi zadachi Neimana v oblasti tipa “gustogo grebeshka””, Trudy semin. im. I. G. Petrovskogo, 19, Izd-vo MGU, M., 1997, 138–173 | MR

[126] Kuchment P. A., “O teorii Floke dlya parabolicheskikh i ellipticheskikh granichnykh zadach v tsilindre”, Dokl. AN SSSR, 258:2 (1981), 269–273 | MR

[127] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, UMN, 37:4 (1982), 3–52 | MR | Zbl

[128] Nicaise S., Sändig A.-M., “General interface problems. 1; 2”, Math. Methods Appl. Sci., 17 (1994), 395–450 | DOI | MR