Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 1037-1039 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1999_54_5_a13,
     author = {T. E. Panov},
     title = {Combinatorial formulae for the $\chi_y$-genus of a~multioriented quasitoric manifold},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1037--1039},
     year = {1999},
     volume = {54},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1999_54_5_a13/}
}
TY  - JOUR
AU  - T. E. Panov
TI  - Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 1037
EP  - 1039
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1999_54_5_a13/
LA  - en
ID  - RM_1999_54_5_a13
ER  - 
%0 Journal Article
%A T. E. Panov
%T Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 1037-1039
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1999_54_5_a13/
%G en
%F RM_1999_54_5_a13
T. E. Panov. Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 1037-1039. http://geodesic.mathdoc.fr/item/RM_1999_54_5_a13/

[1] Davis M., Januszkiewicz T., Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[2] Bukhshtaber V. M., Panov T. E., Trudy MIRAN, 225, 1999, 96–131 | MR

[3] Bukhshtaber V. M., Rei N., Tangential structures on toric manifolds and connected sums of polytopes, Preprint UMIST, Manchester, 1999

[4] Danilov V. I., UMN, 33:2 (1978), 85–134 | MR | Zbl

[5] Bukhshtaber V. M., Rai N., UMN, 53:2 (1998), 139–140 | MR | Zbl

[6] Bukhshtaber V. M., Panov T. E., UMN, 53:3 (1998), 195–196 | MR | Zbl

[7] Hirzebruch F., Berger T., Jung R., Manifolds and Modular Forms, Max-Planc-Institut für Mathematik, Bonn, 1994