Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 1037-1039
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1999_54_5_a13,
author = {T. E. Panov},
title = {Combinatorial formulae for the $\chi_y$-genus of a~multioriented quasitoric manifold},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1037--1039},
year = {1999},
volume = {54},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1999_54_5_a13/}
}
TY - JOUR AU - T. E. Panov TI - Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1999 SP - 1037 EP - 1039 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_1999_54_5_a13/ LA - en ID - RM_1999_54_5_a13 ER -
T. E. Panov. Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 1037-1039. http://geodesic.mathdoc.fr/item/RM_1999_54_5_a13/
[1] Davis M., Januszkiewicz T., Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[2] Bukhshtaber V. M., Panov T. E., Trudy MIRAN, 225, 1999, 96–131 | MR
[3] Bukhshtaber V. M., Rei N., Tangential structures on toric manifolds and connected sums of polytopes, Preprint UMIST, Manchester, 1999
[4] Danilov V. I., UMN, 33:2 (1978), 85–134 | MR | Zbl
[5] Bukhshtaber V. M., Rai N., UMN, 53:2 (1998), 139–140 | MR | Zbl
[6] Bukhshtaber V. M., Panov T. E., UMN, 53:3 (1998), 195–196 | MR | Zbl
[7] Hirzebruch F., Berger T., Jung R., Manifolds and Modular Forms, Max-Planc-Institut für Mathematik, Bonn, 1994