@article{RM_1999_54_5_a1,
author = {A. A. Makhnev},
title = {Partial geometries and their extensions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {895--945},
year = {1999},
volume = {54},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1999_54_5_a1/}
}
A. A. Makhnev. Partial geometries and their extensions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 895-945. http://geodesic.mathdoc.fr/item/RM_1999_54_5_a1/
[1] Ascbacher M., “The non-existence of rank three permutation groups of degree 3250 and subdegree 57”, J. Algebra, 19 (1971), 538–540 | DOI | MR
[2] Blokhuis A., Brouwer A. E., “Locally 4-by-4 grid graphs”, J. Graph Theory, 13 (1989), 229–244 | DOI | MR | Zbl
[3] Bose R., “Strongly regular graphs, partial geometries and partially balanced designs”, Pacif. J. Math., 13 (1963), 389–419 | MR | Zbl
[4] Brown M. R., “Semipartial geometries and generalized quadrangles of order $(r,r^2)$”, Simon Stevin, 5 (1998), 187–205 | MR | Zbl
[5] Brouwer A., Cohen A., Neumaier A., Distance Regular Graphs, Springer-Verlag, Berlin, 1989
[6] Brouwer A., van Lint J., “Strongly regular graphs and partial geometries”, Enumeration and Design, eds. M. Jackson and S. Vanstone, Academic Press, New York, 1984, 85–122 | MR
[7] Buekenhout F., “Diagrams for geometries and groups”, J. Combin. Theory. Ser. A, 27 (1979), 121–151 | DOI | MR | Zbl
[8] Buekenhout F., “The basic diagram of a geometry”, Lecture Notes in Math., 893, 1981, 1–29 | MR | Zbl
[9] Buekenhout F., “$(g,d^*,d)$-gons”, Finite Geometries, eds. N. Johnson et al., Marcel Dekker, New York, 1983, 93–112 | MR
[10] Buekenhout F., “Diagram geometries for sporadic groups”, Contemp. Math., 45 (1985), 132–142 | MR
[11] Buekenhout F., “Foundations of incidence geometry”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 63–105 | MR
[12] Buekenhout F., Hubaut X., “Locally polar spaces and related rank 3 groups”, J. Algebra, 45 (1977), 391–434 | DOI | MR | Zbl
[13] Buekenhout F., Lefevre C., “Generalized quadrangles in projective spaces”, Arch. Math., 25 (1974), 540–552 | DOI | MR | Zbl
[14] Buekenhout F., Van Maldeghem H., “Remarks on finite generalized hexagons and octagons with a point transitive automorphism group”, Finite Geometry and Combinatorics, eds. F. De Clerck et al., Cambridge Univ. Press, Cambridge, 1993, 89–102 | MR | Zbl
[15] Buekenhout F., Pasini A., “Finite diagram geometries extending buildings”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 1143–1254 | MR
[16] Caldebrank A., “On uniformly packed $[n,n-k,4]$ codes over $GF(q)$ and a class of caps in $PG(k-1,q)$”, J. London Math. Soc., 26 (1982), 365–384 | DOI | MR
[17] Caldebrank A., Kantor W., “The geometry of two-weight codes”, Bull. London Math. Soc., 18 (1986), 97–122 | DOI | MR
[18] Cameron P., “Partial quadrangles”, Quart. J. Math., 25 (1974), 1–13 | DOI | MR
[19] Cameron P., Permutation Groups, Cambridge Univ. Press, Cambridge, 1999 | Zbl
[20] Cameron P., Fisher P. H., “Small extended generalized quadrangles”, European J. Combin., 11 (1990), 403–413 | MR | Zbl
[21] Cameron P., Goethals J., Seidel J., “Strongly regular graphs having strongly regular subconstituents”, J. Algebra, 55 (1978), 257–280 | DOI | MR | Zbl
[22] Cameron P., Hughes D. R., Pasini A., “Extended generalized quadrangles”, Geom. Dedicata, 35:1–3 (1990), 193–228 | MR | Zbl
[23] Cohen A., Shult E., “Affine polar spaces”, Geom. Dedicata, 35:1–3 (1990), 43–76 | MR | Zbl
[24] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | Zbl
[25] Coxeter H., “Twelve points in $PG(5,3)$ with 95040 self-transformations”, Proc. Roy. Soc. London A, 247 (1958), 279–293 | DOI | MR | Zbl
[26] Cuypers H., Pasini A., “Locally polar geometries with affine planes”, European J. Combin., 13 (1992), 39–57 | DOI | MR | Zbl
[27] Danzer L., Schulte E., “Reguläre Inzidenzkomplexe, I”, Geom. Dedicata, 13 (1982), 295–308 | DOI | MR | Zbl
[28] De Clerck F., “The pseudo-geometric $(t,s,s-1)$-graphs”, Simon Stevin, 53 (1979), 301–317 | MR | Zbl
[29] De Clerck F., “New partial geometries constructed from old ones”, Bull. Math. Soc. Belg. Simon Stevin, 5 (1998), 255–263 | MR | Zbl
[30] De Clerck F., Dye R., Thas J., “An infinite class of partial geometries associated with the hyperbolic quadric in $PG(4n-1,2)$”, European J. Combin., 1 (1980), 323–326 | MR | Zbl
[31] De Clerck F., De Soete M., Gevaert H., “A characterization of the partial geometry $T_2^*(K)$”, European J. Combin., 8 (1987), 121–127 | MR | Zbl
[32] De Clerck F., Del Fra A., Ghinelli D., “Pointsets in partial geometries”, Advances in Finite Geometries and Designs, Proc. 3rd Isle of Thorns Conf. (Chelwood Gate, UK, 1990), eds. J. Hirshfeld et al., 1991, 93–110 | Zbl
[33] De Clerck F., Gevaert H., Thas J., “Partial geometries and copolar spaces”, Combinatorics'88, ed. A. Barlotti, Mediterranean Press, Rende, 1988, 267–280
[34] De Clerck F., Van Maldeghem H., “On linear representation of $(\alpha,\beta)$-geometries”, European J. Combin., 15 (1994), 3–11 | DOI | MR | Zbl
[35] De Clerck F., Van Maldeghem H., “Some classes of rank 2 geometries”, Handbook of Incidence Geometry: Buildings and Foundations, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 433–475
[36] De Clerk F., Thas J., “Partial geometries in finite projective spaces”, Arch. Math., 30 (1978), 537–540 | DOI | MR
[37] De Clerk F., Thas J., “The embedding of $(0,\alpha)$-geometries in $PG(n,q)$, I”, Ann. Discrete Math., 18 (1983), 229–240
[38] Debroey I., “Semipartial geometries satisfying the diagonal axiom”, J. Geom., 13 (1979), 171–190 | DOI | MR | Zbl
[39] Debroey I., Thas J., “On polarities of symmetric semipartial geometries”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 62 (1977), 607–612 | MR
[40] Debroey I., Thas J., “On semipartial geometries”, J. Comb. Theory A, 25 (1978), 242–250 | DOI | MR | Zbl
[41] Debroey I., Thas J., “Semipartial geometries in $PG(2,q)$ and $PG(3,q)$”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 64 (1978), 147–151 | MR | Zbl
[42] Delandtsheer A., “Dimensional linear spaces”, Handbook of Incidence Geometry: Buildings and Foundations, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 193–294 | MR
[43] Del Fra A., Ghinelli D., “Diameter bounds for locally partial geometries”, European J. Combin., 12 (1991), 293–307 | MR | Zbl
[44] Del Fra A., Ghinelli D., Pasini A., “Diameter bound for an EGQ”, J. Combin. Inform. System Sci., 15 (1990), 256–270 | MR | Zbl
[45] Del Fra A., Ghinelli D., Pasini A., “One diagram for many geometries”, Advances in Finite Geometries and Designs, Proc. 3rd Isle of Thorns Conf. (Chelwood Gate, UK, 1990), eds. J. Hirshfeld et al., 1991, 111–140 | Zbl
[46] Del Fra A., Ghinelli D., Hughes D. R., “Extended partial geometries with minimal $\mu$”, Geom. Dedicata, 42:2 (1992), 119–128 | MR | Zbl
[47] Del Fra A., Ghinelli D., Meixner T., Pasini A., “Flag-transitive extensions of $C_n$ geometries”, Geom. Dedicata, 37:3 (1992), 253–273
[48] Deza M., Laurent M., “Bouquets of matroids, $d$-injection geometries and diagrams”, J. Geom., 29 (1987), 12–35 | DOI | MR | Zbl
[49] Feit W., “Finite projective planes and a question about primes”, Proc. Amer. Math. Soc., 108 (1990), 561–564 | DOI | MR | Zbl
[50] Feit W., Higman G., “The nonexistence of certain generalized poligons”, J. Algebra, 1 (1962), 114–131 | DOI | MR
[51] Gevaert H., Partiele Meetkunden, Maximale Bogen en Flocks of Kwadratische Kegels, Ph. D. Thesis, State Univ. Gent, Gent, 1987
[52] Goethals J., Seidel J., “The regular two-graph on 276 vertices”, Discrete Math., 12 (1975), 143–158 | DOI | MR | Zbl
[53] Haemers W., “A new partial geometry constructed from the Hoffman–Singleton graph”, Finite Geometries and Designs, Proc. 2nd Isle of Thorus Conf. (1980), eds. P. Cameron et al., Cambridge Univ. Press, Cambridge, 1981, 119–127 | MR
[54] Haemers W., “Regular two-graphs and extensions of partial geometries”, European J. Combin., 12 (1991), 115–123 | MR | Zbl
[55] Haemers W., “There exist no $(76,21,2,7)$ strongly regular graph”, Finite Geometries and Combinatorics, eds. F. De Clerck et al., Cambridge Univ. Press, Cambridge, 1993, 175–176 | MR | Zbl
[56] Hall J., “Classifying copolar spaces and copolar graphs”, Quart. J. Math., 33 (1982), 421–449 | DOI | MR | Zbl
[57] Hering C., “Transitive linear groups and linear groups which contain irreducible subgroups of prime order”, Geom. Dedicata, 2 (1974), 425–460 | DOI | MR | Zbl
[58] Hill R., “Caps and groups”, Colloquio Intern. sulle Teorie Combinatorie, V. II (Roma, 1976), Atti dei convegni Lincei, 384–394
[59] Higman D. G., “Flag transitive collineation groups of finite projective spaces”, Illinois J. Math., 6 (1962), 434–446 | MR | Zbl
[60] Higman D. G., McLaughlin J., “Geometric ABA-groups”, Illinois J. Math., 5 (1961), 382–397 | MR | Zbl
[61] Hirshfeld J., Thas J., “The characterizations of projections of quadrics over finite fields of even order”, J. London Math. Soc., 22 (1980), 226–238 | DOI | MR
[62] Hobart S. A., Hughes D. R., “Extended partial geometries: nets and dual nets”, European J. Combin., 11 (1990), 357–372 | MR | Zbl
[63] Hobart S. A., Hughes D. R., “EpGs with minimal $\mu$, II”, Geom. Dedicata, 42 (1992), 129–138 | DOI | MR | Zbl
[64] Hoffman A., Singleton R., “On Moore graphs of diameter 2 and 3”, IBM J. Res. Develop., 4 (1960), 497–504 | MR | Zbl
[65] Huang T., “On quasi-semisymmetric designes”, Finite Geometry and Combinatorics, Abstracts, State Univ. Gent, Gent, 1997, 63–65
[66] Hughes D. R., “Extended partial geometries: dual 2-designes”, European J. Combin., 11 (1990), 459–471 | MR | Zbl
[67] Huybrechts C., Pasini A., “Flag-transitive extensions of dual projective spaces”, Bull. Math. Soc. Belg. Simon Stevin, 5 (1998), 341–352 | MR | Zbl
[68] Ivanov A., Shpectorov S., “A characterization of the association schemes of Hermitian forms”, J. Math. Soc. Japan, 43 (1991), 25–48 | DOI | MR | Zbl
[69] Kantor W., “Symplectic groups, symmetric designs and line ovals”, J. Algebra, 33 (1975), 43–58 | DOI | MR | Zbl
[70] Kantor W., “Strongly regular graphs defined by spreads”, Israel J. Math., 41 (1982), 298–312 | DOI | MR | Zbl
[71] Kantor W., “Generalized polygons, SCABs and GABs”, Buildings and the Geometry of Diagrams, Lecture Notes in Math., 181, ed. L. A. Rosati, Springer-Verlag, Berlin, 1986, 79–158
[72] Kantor W., “Primitive permutation groups of odd degree, and an application to finite projective planes”, J. Algebra, 106 (1987), 15–45 | DOI | MR | Zbl
[73] Kondratev A. S., Makhnev A. A., Starostin A. I., “Konechnye gruppy”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 24, VINITI, M., 1986, 3–120
[74] Lam C., Thiel L., Swiercz S., McKay J., “The non-existence of ovals in a projective plane of order 10”, Discrete Math., 45 (1983), 319–321 | DOI | MR
[75] Makhnev A., “Pseudogeometric graphs connected with partial geometries pg(4,R,1)”, Math. Inst. Oberwolfach, Tagungsbericht, 32, 1991, 11
[76] Makhnev A. A., “O silno regulyarnykh rasshireniyakh obobschennykh chetyrekhugolnikov”, Matem. sb., 184 (1993), 123–132 | Zbl
[77] Makhnev A. A., “Konechnye lokalno $\operatorname{GQ}(3,3)$-grafy”, Sib. matem. zhurn., 35 (1994), 1314–1324 | MR | Zbl
[78] Makhnev A. A., “O psevdogeometricheskikh grafakh chastichnykh geometrii $pG_2(4,t)$”, Matem. sb., 187 (1995), 97–112 | MR
[79] Makhnev A., “Locally $\operatorname{GQ}(3,5)$ graphs and geometries with short lines”, Intern. Conf. dedicated to the memory of P. Kazimirskii, Abstracts, L'viv, 1995, 59–60
[80] Makhnev A. A., “O silno regulyarnykh rasshireniyakh obobschennykh chetyrekhugolnikov s korotkimi pryamymi”, Diskret. matem., 8 (1996), 31–39 | MR | Zbl
[81] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz i issled. operatsii, 3 (1996), 71–83 | MR | Zbl
[82] Makhnev A., “On extensions of partial geometries”, Algebra, Proc. of the 3rd International Conference on Algebra (Krasnoyarsk, Russia, 1993), eds. Yu. L. Ershov et al., de Gruyter, Berlin, 1996, 165–169 | MR | Zbl
[83] Makhnev A. A., “Rasshireniya $\operatorname{GQ}(4,2)$, opisanie giperovalov”, Diskret. matem., 9 (1997), 101–116 | MR | Zbl
[84] Makhnev A. A., “O psevdogeometricheskikh grafakh nekotorykh chastichnykh geometrii”, Voprosy algebry, no. 11, Izd-vo Gomelskogo un-ta, Gomel, 1997, 60–67 | MR
[85] Makhnev A. A., “Lokalno $\operatorname{GQ}(3,5)$-grafy i geometrii s korotkimi pryamymi”, Diskret. matem., 10 (1998), 72–86 | MR | Zbl
[86] Makhnev A., “Partial geometries and the Krein condition”, Intern. Math. Congress, Abstracts (Univ. Bielefeld, 1998), 282
[87] Makhnev A. A., “O psevdogeometricheskikh grafakh chastichnykh geometrii $pG_2(4,t)$, II”, Diskret. matem. (to appear)
[88] Makhnev A. A., “O gruppakh avtomorfizmov chastichnykh geometrii i ikh rasshirenii”, Mezhdunarodnyi algebraicheskii seminar, posv. 70-letiyu kafedry vysshei algebry MGU, Tez. dokl., Izd-vo MGU, M., 1999, 41–42
[89] Makhnev A. A., Paduchikh D. V., “The classification of locally $\operatorname{GQ}(3,q)$-graphs”, Intern. Alg. Conf. dedicated to the memory of D. K. Faddeev, Abstracts, St. Petersburg, 1997, 84
[90] Makhnev A. A., Paduchikh D. V., “O strukture lokalno $\operatorname{GQ}(3,9)$ grafov”, Diskr. analiz i issled. operatsii, 5 (1998), 61–77 | MR | Zbl
[91] Makhnev A. A., Paduchikh D. V., “Vpolne regulyarnye lokalno $\operatorname{GQ}(4,2)$ grafy”, Mezhd. algebr. konf. pamyati A. G. Kurosha, Tez. dokl., M., 1998, 188–189
[92] Mathon R., “The partial geometries $\operatorname{pg}(5,7,3)$”, Congr. Numer., 31 (1981), 129–139 | MR | Zbl
[93] Mathon R., “A new family of partial geometries”, Finite Geometry and Combinatorics, Abstracts, State Univ. Gent, Gent, 1997, 83–84
[94] Meixner T., “Construction of chamber systems of type $M$ with transitive automorphism group”, Buildings and the Geometry of Diagramms, Lecture Notes in Math., 181, ed. L. A. Rosati, Springer-Verlag, Berlin, 1986, 207–217
[95] Meixner T., “Locally finite Tits chamber systems with transitive group of automorphisms in characteristic 3”, Geom. Dedicata, 35 (1990), 13–30 | DOI | MR | Zbl
[96] Pasechnik D. V., “The triangular extensions of a generalized quadrangle of order $(3,3)$”, Bull. Math. Soc. Belg. Simon Stevin, 2 (1995), 509–518 | MR | Zbl
[97] Pasechnik D. V., “The extensions of the generalized quadrangle of order $(3,9)$”, European J. Combin., 17 (1996), 751–755 | DOI | MR | Zbl
[98] Pasini A., “Diagramms and incidence structures”, J. Combin. Theory. Ser. A, 33 (1982), 186–194 | DOI | MR | Zbl
[99] Pasini A., Yoshiara S., “Flag-transitive Buekenhout geometries”, Combinatorics'90, eds. A. Barlotti et al., Elsevier, Amsterdam, 1992, 403–447 | MR
[100] Payne S., Thas J., Finite Generalized Quadrangles, Research Notes in Math., 110, Pitman, Boston, 1984 | Zbl
[101] Pellegrino G., “Su una interpretazione geometrica dei gruppi $M_{11}$ ed $M_{12}$ di Mathieu e su alcuni $t$-$(v,k,\lambda)$-disegni deducibili da una $12_{5,3}^4$ calotta completa”, Atti Sem. Math. Fis. Univ. Modena, 23 (1974), 103–117 | MR
[102] Ronan M., “Extending locally truncated buildings and chamber systems”, Proc. London Math. Soc., 53 (1986), 385–406 | DOI | MR | Zbl
[103] Scharlau R., “Buildings”, Handbook of Incidence Geometry: Buildings and Foundations, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 477–646 | MR
[104] Schulte E., “Reguläre Inzidenzkomplexe. II; III”, Geom. Dedicata, 14 (1983), 33–79 | MR
[105] Segre B., “Forme e geometrie Hermitiane, con particolare riguardo al caso finito”, Ann. Math. Pura Appl., 70 (1965), 1–202 | DOI | MR | Zbl
[106] Seidel J., “Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3”, Linear Algebra Appl., 1 (1968), 281–298 | DOI | MR | Zbl
[107] Seidel J., On two-graphs and Shult's characterization of symplectic and orthogonal geometries over $\operatorname{GF}(2)$, TH-Report 73-WSK-02, Technical Univ. Eindhoven, 1973
[108] Seitz G., “Flag-transitive subgroups of Chevalley groups”, Ann. of Math., 97 (1973), 27–56 | DOI | MR | Zbl
[109] Shult E., “Groups, polar spaces and related structures”, Combinatorics, Proc. Advanced Study Inst. Breukelen, 55, eds. M. Hall and J. van Lint, Math. Centre Tract, Amsterdam, 1974, 130–161 | MR
[110] Spence E., “Is Taylor's graph geometric?”, Discrete Math., 106/107 (1992), 449–454 | DOI | MR | Zbl
[111] Sprague A., “Pasch's axiom and projective spaces”, Discrete Math., 33 (1981), 79–87 | DOI | MR | Zbl
[112] Sprague A., “Rank 3 incidence structures admitting dual-linear, linear diagram”, J. Combin. Theory. Ser. A, 38 (1985), 254–259 | DOI | MR | Zbl
[113] Thas J. A., “Construction of partial geometries”, Simon Stevin, 46 (1972/1973), 95–98 | MR
[114] Thas J. A., “Partial geometries in finite affine spaces”, Math. Z., 178 (1978), 1–13 | DOI | MR
[115] Thas J. A., “Some results on quadrics and a new class of partial geometries”, Simon Stevin, 55 (1981), 129–139 | MR | Zbl
[116] Thas J. A., “Semi-partial geometries and spreads of classical polar spaces”, J. Combin. Theory. Ser. A, 35 (1983), 58–66 | DOI | MR | Zbl
[117] Thas J. A., “Extensions of finite generalized quadrangles”, Sympos. Math., 28, 1986, 127–143 | MR | Zbl
[118] Thas J., Debroey I., De Clerck F., “The embedding of $(0,\alpha)$-geometries in $PG(n,q)$, II”, Discrete Math., 51 (1983), 283–292 | DOI | MR
[119] Thas J., De Clerck F., “Partial geometries satisfying the axiom of Pash”, Simon Stevin, 51 (1977), 123–137 | MR | Zbl
[120] Tits J., “Les groupes de Lie exceptionnels et leur interpretation géométrique”, Bull. Soc. Math. Belg., 8 (1956), 48–81 | MR | Zbl
[121] Tits J., “Sur la trialité et certains groupes qui s'en deduisent”, Publ. Math. Inst. Hautes Etudes Sci., 2 (1959), 14–60 | DOI
[122] Tits J., “Geometries polyedriques et groupes simples”, Atti della II Riunione del Groupement de Mathematiciens d'Expression Latine (Firenze–Bologna, 1961), 1963, 66–88 | Zbl
[123] Tits J., Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Math., 386, Springer-Verlag, Berlin, 1974 | Zbl
[124] Tits J., “A local approach to buildings”, The Geometric Vein. The Coxeter Festschrift, Springer-Verlag, Berlin, 1982, 519–547
[125] Tzanakis N., Wolfskill J., “The diophantine equation $x^2=4q^{a/2}+4q+1$ with an application to coding theory”, J. Number Theory, 26 (1987), 96–116 | DOI | MR | Zbl
[126] Wallis W., “Configurations arising from maximal arcs”, J. Combin. Theory. Ser. A, 15 (1973), 115–119 | DOI | MR | Zbl
[127] Wilbrink H., Brouwer A., “$(57,14,1)$ strongly regular graph does not exist”, Indag. Math., 45 (1983), 117–121 | MR | Zbl
[128] Wilbrink H., Brouwer A., “A characterization of two classes of semipartial geometries by their parameters”, Simon Stevin, 58 (1984), 273–288 | MR | Zbl
[129] Yoshiara S., “On some flag-transitive non-classical $c.C_2$-geometries”, European J. Combin., 14 (1993), 59–77 | DOI | MR | Zbl