Unitary reflection groups associated with singularities of functions with cyclic symmetry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 873-893 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite groups generated by Euclidean reflections have been commonplace in various problems of singularity theory since their relationship with the classification of critical points of functions was discovered by Arnol'd [1], [2]. We show that a number of finite groups generated by unitary reflections are also naturally related to singularities of functions, namely, those invariant under a unitary reflection of finite order. To this end, we consider germs of functions on a manifold with boundary and lift them to a cyclic covering of the manifold, ramified over the boundary. This construction provides a new notion of roots for the groups under consideration and provides skew-Hermitian analogues of these groups.
@article{RM_1999_54_5_a0,
     author = {V. V. Goryunov},
     title = {Unitary reflection groups associated with singularities of functions with cyclic symmetry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {873--893},
     year = {1999},
     volume = {54},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1999_54_5_a0/}
}
TY  - JOUR
AU  - V. V. Goryunov
TI  - Unitary reflection groups associated with singularities of functions with cyclic symmetry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 873
EP  - 893
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1999_54_5_a0/
LA  - en
ID  - RM_1999_54_5_a0
ER  - 
%0 Journal Article
%A V. V. Goryunov
%T Unitary reflection groups associated with singularities of functions with cyclic symmetry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 873-893
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1999_54_5_a0/
%G en
%F RM_1999_54_5_a0
V. V. Goryunov. Unitary reflection groups associated with singularities of functions with cyclic symmetry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 5, pp. 873-893. http://geodesic.mathdoc.fr/item/RM_1999_54_5_a0/

[1] Arnold V. I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | MR | Zbl

[2] Arnold V. I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR | Zbl

[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. T. I. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982

[4] “Monodromiya izolirovannykh osobennostei giperpoverkhnostei”, Matematika, 15:4 (1972), 130–160

[5] Brieskorn E., “Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe”, Invent. Math., 12 (1971), 57–61 | DOI | MR | Zbl

[6] Broué M., Malle G., “Zyklotomische Heckealgebren”, Astérisque, 212, 1993, 119–189 | MR | Zbl

[7] Cohen A. M., “Finite complex reflection groups”, Ann. Sci. Ecole Norm. Sup., 9 (1976), 379–436 | MR | Zbl

[8] Coxeter H. S. M., “Finite groups generated by unitary reflections”, Abh. Math. Sem. Univ. Hamburg, 31 (1967), 125–135 | DOI | MR | Zbl

[9] Coxeter H. S. M., Regular Complex Polytopes, Cambridge Univ. Press, London, 1974 | Zbl

[10] Ebeling W., Gusein-Zade S. M., “Suspensions of fat points and their intersection forms”, Progr. Math., 162, 1998, 141–165 | MR | Zbl

[11] Gabrielov A. M., “Matritsy peresechenii dlya nekotorykh osobennostei”, Funkts. analiz i ego pril., 7:3 (1973), 8–32 | MR

[12] Givental A. B., “Skruchennye formuly Pikara–Lefshetsa”, Funkts. analiz i ego pril., 22:1 (1988), 12–22 | MR | Zbl

[13] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy otobrazheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR

[14] Lyashko O. V., “Klassifikatsiya kriticheskikh tochek funktsii na mnogoobrazii s osobym kraem”, Funkts. analiz i ego pril., 17:3 (1983), 28–36 | MR | Zbl

[15] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | Zbl

[16] Orlik P., Solomon L., “Discriminants in the invariant theory of reflection groups”, Nagoya Math. J., 109 (1988), 23–45 | MR | Zbl

[17] Popov V. L., “Discrete complex reflection groups”, Comm. Math. Inst., 15, Rijksuniv. Utr., 1982, 1–89

[18] Scherbak O. P., “Volnovye fronty i gruppy otrazhenii”, UMN, 43:3 (1988), 125–160 | MR | Zbl

[19] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | MR | Zbl

[20] Siersma D., “Singularities of functions on boundaries, corners, etc.”, Quart. J. Math., 32 (1981), 119–127 | DOI | MR | Zbl

[21] Tibar M., “On isolated cyclic quotients with simplest complex link”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 205–214 | DOI | MR | Zbl

[22] Wassermann G., “Classification of singularities with compact abelian symmetry”, Regensburger Math. Schr., 1 (1977), 1–284 | MR | Zbl