Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 53 (1998) no. 3, pp. 515-622 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1998_53_3_a1,
     author = {O. I. Mokhov},
     title = {Symplectic and {Poisson} structures on loop spaces of smooth manifolds, and integrable systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {515--622},
     year = {1998},
     volume = {53},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1998_53_3_a1/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1998
SP  - 515
EP  - 622
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1998_53_3_a1/
LA  - en
ID  - RM_1998_53_3_a1
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1998
%P 515-622
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1998_53_3_a1/
%G en
%F RM_1998_53_3_a1
O. I. Mokhov. Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 53 (1998) no. 3, pp. 515-622. http://geodesic.mathdoc.fr/item/RM_1998_53_3_a1/

[1] Alekseev V. L., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s uravneniyami Uizema”, UMN, 50:6 (1995), 165–166 | MR | Zbl

[2] Antonovicz M., Fordy A. P., “A family of completely integrable multi-Hamiltonian systems”, Phys. Lett. A, 122 (1987), 95–99 | DOI | MR

[3] Antonovicz M., Fordy A. P., “Coupled KdV equations with multi-Hamiltonian structures”, Physica D, 28 (1987), 345–357 | DOI | MR

[4] Antonovicz M., Fordy A. P., “Coupled KdV equations associated with a novel Schrödinger spectral problem”, Nonlinear Evolution, Proceedings of the 4th Workshop on Nonlinear Evolution Equations and Dynamical Systems (France), ed. J. P. Leon, 1987, 145–159

[5] Astashov A. M., “Normalnye formy gamiltonovykh operatorov v teorii polya”, Dokl. AN SSSR, 270:5 (1983), 363–368 | MR

[6] Astashov A. M., Vinogradov A. M., “On the structure of Hamiltonian operators in field theory”, J. Geom. Phys., 3:2 (1986), 263–287 | DOI | MR | Zbl

[7] Balinskii A. A., Novikov S. P., “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, Dokl. AN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl

[8] Benney D. J., “Some properties of long nonlinear waves”, Stud. Appl. Math., 52:1 (1973), 45–50 | Zbl

[9] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981

[10] Bochner S., “Curvature and Betti numbers”, Ann. of Math., 49:2 (1948), 379–390 | DOI | MR | Zbl

[11] Bochner S., “Curvature and Betti numbers, II”, Ann. of Math., 50:1 (1949), 77–93 | DOI | MR | Zbl

[12] Bochner S., Yano K., “Tensor-fields in non-symmetric connections”, Ann. of Math., 56:3 (1952), 504–519 | DOI | MR | Zbl

[13] Bogoyavlenskii O. I., Novikov S. P., “O svyazi gamiltonovykh formalizmov statsionarnykh i nestatsionarnykh zadach”, Funkts. analiz i ego pril., 10:1 (1976), 9–13 | MR | Zbl

[14] Calogero F., “Solutions of certain integrable nonlinear PDE's describing nonresonant $N$-wave interactions”, J. Math. Phys., 30:3 (1989), 639–654 | DOI | MR | Zbl

[15] Cooke D. B., “Classification results and the Darboux theorem for low-order Hamiltonian operators”, J. Math. Phys., 32:1 (1991), 109–119 | DOI | MR | Zbl

[16] Cooke D. B., “Compatibility conditions for Hamiltonian pairs”, J. Math. Phys., 32:11 (1991), 3071–3076 | DOI | MR | Zbl

[17] Dijkgraaf R., Verlinde H., Verlinde E., “Topological strings in $d1$”, Nucl. Phys. B, 352 (1991), 59–86 | DOI | MR

[18] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[19] Dorfman I. Ya., “Dirac structures of integrable evolution equations”, Phys. Lett. A, 125:5 (1987), 240–246 | DOI | MR

[20] Dorfman I. Ya., Dirac structures and integrability of nonlinear evolution equations, Wiley, Chichester, 1993

[21] Dorfman I. Ya., “On differential operators that generate Hamiltonian structures”, Phys. Lett. A, 140:7–8 (1989), 378–382 | DOI | MR

[22] Dorfman I. Ya., “Uravnenie Krichevera–Novikova i lokalnye simplekticheskie struktury”, Dokl. AN SSSR, 302:4 (1988), 792–795 | Zbl

[23] Dorfman I. Ya., Struktury Diraka integriruemykh evolyutsionnykh uravnenii, Diss. $\dots$ dokt. fiz.-matem. nauk, LOMI AN SSSR, L., 1989

[24] Dorfman I. Ya., Mokhov O. I., “Local symplectic operators and structures related to them”, J. Math. Phys., 32:12 (1991), 3288–3296 | DOI | MR | Zbl

[25] Dorfman I. Ya., Nijhoff F. W., “On a $(2+1)$-dimensional version of the Krichever–Novikov equation”, Phys. Lett. A, 157 (1991), 107–112 | DOI | MR

[26] Doyle P. W., “Differential geometric Poisson bivectors in one space variable”, J. Math. Phys., 34:4 (1993), 1314–1338 | DOI | MR | Zbl

[27] Dubrovin B. A., Geometry of 2D topological field theories, Preprint SISSA–89/94/FM, SISSA, Trieste, 1994; E-print hep-th/9407018

[28] Dubrovin B. A., “Integrable systems in topological field theory”, Nucl. Phys. B, 379 (1992), 627–689 | DOI | MR

[29] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[30] Dubrovin B. A., Novikov S. P., “Hydrodynamics of soliton lattices”, Sov. Sci. Rev. C. Math. Phys., 9:4 (1993), 1–136 | Zbl

[31] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[32] Dubrovin B. A., Novikov S. P., “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR, 279:2 (1984), 294–297 | MR | Zbl

[33] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[34] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986

[35] Ferapontov E. V., “Gamiltonovye sistemy gidrodinamicheskogo tipa i ikh realizatsiya na giperpoverkhnostyakh psevdoevklidova prostranstva”, Itogi nauki i tekhniki. Problemy geometrii, 22, VINITI, M., 1990, 59–96 | MR

[36] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl

[37] Ferapontov E. V., “Nelokalnye matrichnye gamiltonovy operatory. Differentsialnaya geometriya i prilozheniya”, TMF, 91:3 (1992), 452–462 | MR

[38] Ferapontov E. V., “Ogranichenie po Diraku gamiltonova operatora $\delta^{IJ}\frac d{dx}$ na poverkhnost evklidova prostranstva s ploskoi normalnoi svyaznostyu”, Funkts. analiz i ego pril., 26:4 (1992), 83–86 | MR

[39] Ferapontov E. V., “On integrability of $3\times3$ semi-Hamiltonian hydrodynamic type systems which do not possess Riemann invariants”, Physica D, 63 (1993), 50–70 | DOI | MR | Zbl

[40] Ferapontov E. V., “On the matrix Hopf equation and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, Phys. Lett. A, 179 (1993), 391–397 | DOI | MR

[41] Ferapontov E. V., “Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type which do not possess Riemann invariants”, Diff. Geometry Appl., 5:2 (1995), 121–152 | DOI | MR | Zbl

[42] Ferapontov E. V., “Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, TMF, 99:2 (1994), 257–262 | MR | Zbl

[43] Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in Topology and Mathematical Physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl

[44] Ferapontov E. V., Fordy A. P., “Separable Hamiltonians and integrable systems of hydrodynamic type”, J. Geom. Phys., 21:2 (1997), 169–182 | DOI | MR | Zbl

[45] Ferapontov E. V., Fordy A. P., “Non-homogeneous systems of hydrodynamic type, related to quadratic Hamiltonians with electromagnetic term”, Physica D, 108 (1997), 350–364 | DOI | MR | Zbl

[46] Ferapontov E. V., Galvão C. A. P., Mokhov O. I., Nutku Y., “Bi-Hamiltonian structure of equations of associativity in 2D topological field theory”, Comm. Math. Phys., 186 (1997), 649–669 | DOI | MR | Zbl

[47] Ferapontov E. V., Mokhov O. I., “On the Hamiltonian representation of the associativity equations”, Algebraic aspects of integrable systems, In memory of Irene Dorfman, eds. I. M. Gelfand, A. S. Fokas, Birkhäuser, Boston, 1996, 75–91

[48] Ferapontov E. V., Mokhov O. I., “The equations of the associativity as hydrodynamic type systems: Hamiltonian representation and integrability”, Proceedings of the First International Workshop “Nonlinear Physics. Theory and Experiment. Nature, Structure and Properties of Nonlinear Phenomena” (Le Sirenuse, Gallipoli (Lecce), Italy. 29 June–7 July, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, Singapore, 1996, 104–115 | MR | Zbl

[49] Ferapontov E. V., Pavlov M. V., “Quasiclassical limit of coupled KdV equations. Riemann invariants and multi-Hamiltonian structure”, Physica D, 52 (1991), 211–219 | DOI | MR | Zbl

[50] Fokas A. S., Fuchssteiner B., “On the structure of symplectic operators and hereditary symmetries”, Lettere al Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR

[51] Fordy A. P., Reyman A. G., Semenov-Tian-Shansky M. A., “Classical $R$-matrices and compatible Poisson brackets for coupled KdV systems”, Lett. Math. Phys., 17:1 (1989), 25–29 | DOI | MR | Zbl

[52] Fuchssteiner B., “Application of hereditary symmetries to nonlinear evolution equations”, Nonlinear Analysis. Theory, Methods and Applications, 3 (1979), 849–862 | DOI | MR | Zbl

[53] Fuchssteiner B., “A symmetry approach to exactly solvable evolution equations”, J. Math. Phys., 21 (1980), 1318–1325 | DOI | MR

[54] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Physica D, 4 (1981), 47–66 | DOI | MR

[55] Ganzha E. I., “Osnovnye serii neodnorodnykh sistem gidrodinamicheskogo tipa s postoyannymi matritsami, obladayuschikh zakonami sokhraneniya $1$-go poryadka”, Fundamentalnaya i prikladnaya matematika, 1:3 (1995), 641–648 | MR | Zbl

[56] Ganzha E. I., “O vysshikh zakonakh sokhraneniya neodnorodnykh sistem gidrodinamicheskogo tipa”, Vestnik MGU. Ser. 1, 1996, no. 1, 86–87 | MR

[57] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Korteweg–de Vries equation and generalizations. VI: Methods for exact solution”, Comm. Pure Appl. Math., 27 (1974), 97–133 | DOI | MR | Zbl

[58] Gelfand I. M., Dikii L. A., “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz i ego pril., 10:4 (1976), 13–29 | MR | Zbl

[59] Gelfand I. M., Dikii L. A., “Rezolventa i gamiltonovy sistemy”, Funkts. analiz i ego pril., 11:2 (1977), 11–27 | MR

[60] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego pril., 13:4 (1979), 13–30 | MR | Zbl

[61] Gelfand I. M., Dorfman I. Ya., “Skobka Skhoutena i gamiltonovy operatory”, Funkts. analiz i ego pril., 14:3 (1980), 71–74 | MR | Zbl

[62] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i beskonechnomernye algebry Li”, Funkts. analiz i ego pril., 15:3 (1981), 23–40 | MR | Zbl

[63] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i klassicheskoe uravnenie Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 1–9 | MR | Zbl

[64] Gelfand I. M., Manin Yu. I., Shubin M. A., “Skobki Puassona i yadro variatsionnoi proizvodnoi v formalnom variatsionnom ischislenii”, Funkts. analiz i ego pril., 10:4 (1976), 30–34 | MR | Zbl

[65] Gibbons J., Tsarev S. P., “Reductions of the Benney equations”, Phys. Lett. A, 211:1 (1996), 19–24 | DOI | MR | Zbl

[66] Grinberg N. I., “O skobkakh Puassona gidrodinamicheskogo tipa s vyrozhdennoi metrikoi”, UMN, 40:4 (1985), 217–218 | MR | Zbl

[67] Haantjes A., “On $X_{n-1}$-forming sets of eigenvectors”, Indagationes Mathematicae, 17:2 (1955), 158–162 | MR

[68] Kats V., Beskonechnomernye algebry Li, Mir, M., 1993 | Zbl

[69] Kontsevich M., “Homological algebra of mirror symmetry”, Proceedings of the International Congress of Mathematicians, V. 1 (August 3–11, 1994, Zürich, Switzerland), Birkhäuser, Basel, 1995, 120–139 | MR

[70] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562 | DOI | MR | Zbl

[71] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Annales de l'Institut Henri Poincaré, série A (Physique théorique), 53:1 (1990), 35–81 | MR | Zbl

[72] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya i nelineinye uravneniya. Konechnozonnye resheniya ranga $2$”, Dokl. AN SSSR, 247:1 (1979), 33–37 | MR | Zbl

[73] Kupershmidt B. A., “Invariance of the stationary manifold of a conserved density”, Phys. Lett. A, 121:8–9 (1987), 395–398 | DOI | MR

[74] Kupershmidt B. A., “$GL_2$-orbit of the Korteweg–de Vries equation”, Phys. Lett. A, 156:1, 2 (1991), 53–60 | DOI | MR

[75] Kupershmidt B. A., Wilson G., “Modifying Lax equations and the second hamiltonian structure”, Invent. Math., 62:3 (1981), 403–436 | DOI | MR

[76] Lax P. D., “Periodic solutions of the KdV equation”, Lect. Appl. Math., 15 (1974), 85–96 | MR

[77] Lax P. D., “Almost periodic solutions of the KdV equation”, SIAM Review, 18:3 (1976), 351–375 | DOI | MR | Zbl

[78] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[79] Magri F., “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems, Lect. Notes in Physics, 120, eds. M. Boiti, F. Pempinelli, G. Soliani, Springer-Verlag, New York, 1980, 233–263 | MR

[80] Magri F., Morosi C., Tondo G., “Nijenhuis $G$-manifolds and Lenard bicomplexes”, Comm. Math. Phys., 115 (1988), 457–475 | DOI | MR | Zbl

[81] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, VINITI, M., 1978, 5–152 | MR

[82] Miura R. M., “Korteweg–de Vries equation and generalizations. I: A remarkable explicit nonlinear transformation”, J. Math. Phys., 9:8 (1968), 1202–1204 | DOI | MR | Zbl

[83] Meshkov A. G., “Hamiltonian and recursion operators for two-dimensional scalar fields”, Phys. Lett. A, 170:6 (1992), 405–408 | DOI | MR

[84] Mokhov O. I., “Gamiltonovost evolyutsionnogo potoka na mnozhestve statsionarnykh tochek ego integrala”, UMN, 39:4 (1984), 173–174 | MR

[85] Mokhov O. I., “Lokalnye skobki Puassona tretego poryadka”, UMN, 40:5 (1985), 257–258 | MR | Zbl

[86] Mokhov O. I., Geometriya kommutiruyuschikh differentsialnykh operatorov ranga $3$ i gamiltonovykh potokov, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1986

[87] Mokhov O. I., “Gamiltonovy differentsialnye operatory i kontaktnaya geometriya”, Funkts. analiz i ego pril., 21:3 (1987), 53–60 | MR | Zbl

[88] Mokhov O. I., “O gamiltonovosti proizvolnoi evolyutsionnoi sistemy na mnozhestve statsionarnykh tochek ee integrala”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 53–60 | MR

[89] Mokhov O. I., “O skobkakh Puassona tipa Dubrovina–Novikova (DN-skobki)”, Funkts. analiz i ego pril., 22:4 (1988), 92–93 | MR | Zbl

[90] Mokhov O. I., “Kanonicheskie peremennye dlya vikhrevoi dvumernoi gidrodinamiki neszhimaemoi zhidkosti”, TMF, 78:1 (1989), 136–139 | MR

[91] Mokhov O. I., “Kontaktnaya geometriya i variatsionnoe ischislenie”, Geometriya, topologiya i prilozheniya, MIP, M., 1990, 111–115

[92] Mokhov O. I., “O gamiltonovoi strukture evolyutsii po prostranstvennoi peremennoi $x$ dlya uravneniya Kortevega–de Friza”, UMN, 45:1 (1990), 181–182 | MR | Zbl

[93] Mokhov O. I., “Simplekticheskie formy na prostranstve petel i rimanova geometriya”, Funkts. analiz i ego pril., 24:3 (1990), 86–87 | MR

[94] Mokhov O. I., “Odnorodnye simplekticheskie struktury vtorogo poryadka na prostranstvakh petel i simplekticheskie svyaznosti”, Funkts. analiz i ego pril., 25:2 (1991), 65–67 | MR

[95] Mokhov O. I., “Kanonicheskoe gamiltonovo predstavlenie uravneniya Krichevera–Novikova”, Matem. zametki, 50:3 (1991), 87–96 | MR

[96] Mokhov O. I., “Teorema o gamiltonovosti evolyutsionnogo potoka na mnozhestve statsionarnykh tochek ego integrala i teorema Neter”, Asimptoticheskie metody resheniya differentsialnykh uravnenii, Institut matematiki UrO RAN, Ufa, 1992, 74–75

[97] Mokhov O. I., “Dvumernye nelineinye $\sigma$-modeli v teorii polya: simplekticheskii podkhod”, Tezisy 9-oi Vserossiiskoi konferentsii “Sovremennyi gruppovoi analiz. Metody i prilozheniya” (24–30 iyunya 1992), Nauchno-issledov. radiofiz. in-t, Nizhnii Novgorod, 1992, 38

[98] Mokhov O. I., “O kompleksakh odnorodnykh form na prostranstvakh petel gladkikh mnogoobrazii i ikh gruppakh kogomologii”, UMN, 51:2 (1996), 141–142 | MR | Zbl

[99] Mokhov O. I., Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy, Diss. $\dots$ dokt. fiz.-matem. nauk, Matem. in-t im. V. A. Steklova RAN, M., 1996 | Zbl

[100] Mokhov O. I., “O gruppakh kogomologii kompleksov odnorodnykh form na prostranstvakh petel gladkikh mnogoobrazii”, Funkts. analiz i ego pril., 32:2 (1998) | Zbl

[101] Mokhov O. I., “Differentsialnaya geometriya simplekticheskikh i puassonovykh struktur na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, Prostranstva petel i gruppy diffeomorfizmov, Sb. statei, Trudy MIAN, 217, ed. A. G. Sergeev, Nauka; MAIK Nauka, M., 1997, 100–134 | MR | Zbl

[102] Mokhov O. I., “O soglasovannykh puassonovykh strukturakh gidrodinamicheskogo tipa”, UMN, 52:6 (1997), 173–174 | MR

[103] Mokhov O. I., “O soglasovannykh potentsialnykh deformatsiyakh frobeniusovykh algebr i uravneniyakh assotsiativnosti”, UMN, 53:2 (1998), 141–142 | MR

[104] Mokhov O. I., “Vorticity equation of two-dimensional hydrodynamics of an incompressible fluid as canonical Hamiltonian system”, Phys. Lett. A, 139:8 (1989), 363–368 | DOI | MR

[105] Mokhov O. I., “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Phys. Lett. A, 166:3–4 (1992), 215–216 | DOI | MR

[106] Mokhov O. I., “On the canonical variables for two-dimensional vortex hydrodynamics of incompressible fluid”, International Series of Numerical Mathematics, 106, Birkhäuser, Basel, 1992, 215–221 | MR | Zbl

[107] Mokhov O. I., “Two-dimensional nonlinear sigma models and symplectic geometry on loop spaces of (pseudo)-Riemannian manifolds”, Nonlinear evolution equations and dynamical systems, Proceedings of the 8th International Workshop (NEEDS'92) (6–17 July, 1992, Dubna, Russia), ed. V. G. Makhan'kov, World Scientific, Singapore, 1993, 444–456; E-print hep-th/9301048

[108] Mokhov O. I., “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in topology and mathematical physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 121–151; E-print hep-th/9503076 | MR

[109] Mokhov O. I., “Differential equations of associativity in 2D topological field theories and geometry of nondiagonalizable systems of hydrodynamic type”, Internat. Conference on Integrable Systems “Nonlinearity and Integrability: from Mathematics to Physics” (February 21–24, 1995, Montpellier, France)

[110] Mokhov O. I., “Poisson and symplectic geometry on loop spaces of smooth manifolds”, Geometry from the Pacific Rim, Proceedings of the Pacific Rim Geometry Conference (National University of Singapore, Republic of Singapore, December 12–17, 1994), eds. A. J. Berrick, B. Loo, H.-Y. Wang, Walter de Gruyter, Berlin, 1997, 285–309 | MR | Zbl

[111] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl

[112] Mokhov O. I., Ferapontov E. V., “Gamiltonovy pary, porozhdaemye kososimmetrichnymi tenzorami Killinga na prostranstvakh postoyannoi krivizny”, Funkts. analiz i ego pril., 28:2 (1994), 60–63 | MR | Zbl

[113] Mokhov O. I., Ferapontov E. V., “Uravneniya assotsiativnosti dvumernoi topologicheskoi teorii polya kak integriruemye gamiltonovy nediagonalizuemye sistemy gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 30:3 (1996), 62–72 ; E-print hep-th/9505180 | MR

[114] Mokhov O. I., Nutku Y., Homogeneous Poisson brackets of Dubrovin–Novikov type and their nonlocal generalizations, Preprint, TÜBITAK – Marmara Research Center, Research Institute for Basic Sciences, Gebze, Turkey, 1996

[115] Mokhov O. I., Nutku Y., “Bianchi transformation between the real hyperbolic Monge–Ampère equation and the Born–Infeld equation”, Lett. Math. Phys., 32:2 (1994), 121–123 | DOI | MR | Zbl

[116] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indagationes Mathematicae, 13:2 (1951), 200–212 | MR | Zbl

[117] Nijenhuis A., “Geometric aspects of formal differential operators on tensor fields”, Proceedings of the International Congress of Mathematicians (1958, Edinburgh), 463–469

[118] Novikov S. P., “Periodicheskaya zadacha Kortevega–de Friza”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[119] Novikov S. P., “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 3–32

[120] Novikov S. P., “Geometriya konservativnykh sistem gidrodinamicheskogo tipa. Metod usredneniya dlya teoretiko-polevykh sistem”, UMN, 40:4 (1985), 79–89 | MR

[121] Novikov S. P., “Differential geometry and hydrodynamics of soliton lattices”, Important developments in soliton theory, Springer Ser. in Nonlinear Dyn., eds. A. S. Fokas, V. E. Zakharov, Springer-Verlag, Berlin, 1993, 242–256 | Zbl

[122] Novikov S. P. (red.), Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980

[123] Nutku Y., “Canonical formulation of shallow water waves”, J. Phys. A, 16 (1983), 4195 | DOI | MR | Zbl

[124] Nutku Y., “Hamiltonian formulation of the KdV equation”, J. Math. Phys., 25:6 (1984), 2007–2008 | DOI | MR

[125] Nutku Y., “Hamiltonian structure of real Monge–Ampère equations”, J. Phys. A.: Math. Gen., 29 (1996), 3257–3280 | DOI | MR | Zbl

[126] Nutku Y., Sarıoğlu O., “An integrable family of Monge–Ampère equations and their multi-Hamiltonian structure”, Phys. Lett. A, 173:3 (1993), 270–274 | DOI | MR

[127] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | Zbl

[128] Pavlov M. V., “Multigamiltonovy struktury uravnenii Uizema”, Dokl. AN SSSR, 338:2 (1994), 165–167 | MR | Zbl

[129] Pavlov M. V., “Ellipticheskie koordinaty i multigamiltonovy struktury sistem gidrodinamicheskogo tipa”, Dokl. AN, 339:1 (1994), 21–23 | MR | Zbl

[130] Pavlov M. V., Tsarev S. P., “O zakonakh sokhraneniya uravnenii Benni”, UMN, 46:4 (1991), 169–170 | MR

[131] Potemin G. V., Nekotorye voprosy differentsialnoi geometrii i algebraicheskoi geometrii v teorii solitonov, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1991

[132] Potemin G. V., “O skobkakh Puassona differentsialno-geometricheskogo tipa”, Dokl. AN SSSR, 286:1 (1986), 39–42 | MR | Zbl

[133] Reeb G., “Quelques propriétés globales des trajectoires de la dynamique dues à l'existence de l'invariant intégral de M. Élie Cartan”, Comptes Rendus Acad. Sci. Paris, 229:20 (1949), 969–971 | MR | Zbl

[134] Reeb G., “Variétés de Riemann dont toutes les géodésiques sont fermées”, Bull. Cl. Sciences. Acad. Royale Belg. 5 Série, 36:4 (1950), 324–329 | MR | Zbl

[135] Ruan Y., Tian G., “A mathematical theory of quantum cohomology”, J. Diff. Geometry, 42:2 (1995), 259–367 | MR | Zbl

[136] Sokolov V. V., “O gamiltonovosti uravneniya Krichevera–Novikova”, Dokl. AN SSSR, 277:1 (1984), 48–50 | MR

[137] Tsarev S. P., “O skobkakh Puassona i odnomernykh gamiltonovykh sistemakh gidrodinamicheskogo tipa”, Dokl. AN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[138] Tsarev S. P., “Gamiltonovost statsionarnykh i obraschennykh uravnenii mekhaniki sploshnykh sred i matematicheskoi fiziki”, Matem. zametki, 46:1 (1989), 105–111 | MR | Zbl

[139] Tsarev S. P., Differentsialno-geometricheskie metody integrirovaniya sistem gidrodinamicheskogo tipa, Diss. $\dots$ dokt. fiz.-matem. nauk, Matem. in-t im. V. A. Steklova RAN, M., 1993 | Zbl

[140] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | Zbl

[141] Veselov A. P., “O gamiltonovom formalizme dlya uravnenii Novikova–Krichevera kommutativnosti dvukh operatorov”, Funkts. analiz i ego pril., 13:1 (1979), 1–7 | MR | Zbl

[142] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnye operatory”, Funkts. analiz iego pril., 22:2 (1988), 1–13 | MR

[143] Veselov A. P., “Chto takoe integriruemoe otobrazhenie?”, Integriruemost i kineticheskie uravneniya dlya solitonov, Naukova Dumka, Kiev, 1990, 44–64 | MR

[144] Veselov A. P., “Integriruemye otobrazheniya”, UMN, 46:5 (1991), 3–45 | MR

[145] Vinogradov A. M., “Gamiltonovy struktury v teorii polya”, Dokl. AN SSSR, 241:1 (1978), 18–21 | MR | Zbl

[146] Weinstein A., “On the volume of manifolds all of whose geodesics are closed”, J. Diff. Geom., 9:4 (1974), 513–517 | MR | Zbl

[147] Witten E., “On the structure of topological phase of two-dimensional gravity”, Nucl. Phys. B, 340 (1990), 281–332 | DOI | MR

[148] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Diff. Geometry, 1 (1991), 243–310 | MR

[149] Yano K., “On harmonic and Killing vector fields”, Ann. of Math., 55:1 (1952), 38–45 | DOI | MR | Zbl

[150] Yano K., “Some remarks on tensor fields and curvature”, Ann. of Math., 55:2 (1952), 328–347 | DOI | MR | Zbl

[151] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957

[152] Zakharov V. E., “Uravneniya Benni i kvaziklassicheskoe priblizhenie v metode obratnoi zadachi”, Funkts. analiz i ego pril., 14:2 (1980), 15–24 | MR | Zbl