Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 1057-1116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1997_52_5_a8,
     author = {S. P. Novikov and I. A. Dynnikov},
     title = {Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1057--1116},
     year = {1997},
     volume = {52},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1997_52_5_a8/}
}
TY  - JOUR
AU  - S. P. Novikov
AU  - I. A. Dynnikov
TI  - Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 1057
EP  - 1116
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1997_52_5_a8/
LA  - en
ID  - RM_1997_52_5_a8
ER  - 
%0 Journal Article
%A S. P. Novikov
%A I. A. Dynnikov
%T Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 1057-1116
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1997_52_5_a8/
%G en
%F RM_1997_52_5_a8
S. P. Novikov; I. A. Dynnikov. Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 1057-1116. http://geodesic.mathdoc.fr/item/RM_1997_52_5_a8/

[1] Dynnikov I. A., Novikov S. P., “Preobrazovaniya Laplasa i simplitsialnye svyaznosti”, UMN, 52:6 (1997), 157–158 | MR | Zbl

[2] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[3] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov, Nauka, M., 1980

[4] Kuznetsov E. A., Mikhailov A. V., “Ustoichivost statsionarnykh voln v nelineinykh sredakh so slaboi dispersiei”, ZhETF, 67 (1974), 1717–1727

[5] Krichever I. M., “Potentsialy s nulevym koeffitsientom otrazheniya na fone konechnozonnykh”, Funktsion. analiz i ego pril., 9:2 (1975), 77–78 | MR | Zbl

[6] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza, I”, Funktsion. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[7] Dubrovin B. A., Novikov S. P., “Osnovnye sostoyaniya v periodicheskom pole. Magnitno-blokhovskie funktsii i vektornye rassloeniya”, Dokl. AN SSSR, 253:6 (1980), 1293–1297 | MR | Zbl

[8] Dubrovin B. A., Novikov S. P., “Osnovnye sostoyaniya dvumernogo elektrona”, ZhETF, 79:3 (1980), 1006–1016 | MR

[9] Its A. P., Matveev V. B., “Operator Shrëdingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–68 | MR

[10] Lax P., “Periodic solutions of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 28 (1975), 141–188 | MR | Zbl

[11] McKean H., Van Mörbeke P., “The spectrum of Hill's equation”, Invent. Math., 30 (1975), 217–274 | DOI | MR | Zbl

[12] Weiss J., “Period fixed points of Bäcklund transformations and the KdV equation”, J. Math. Phys., 27 (1986), 2647–2656 | DOI | MR | Zbl

[13] Veselov A. P., Shabat A. B., “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shrëdingera”, Funktsion. analiz i ego pril., 27:2 (1993), 1–21 | MR | Zbl

[14] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer-Verlag, 1991

[15] Novikov S. P., “Dvumernye operatory Shrëdingera v periodicheskikh polyakh”, Itogi nauki i tekhn. Sovr. probl. matem., 23, 1983, 3–32

[16] Krichever I. M., “Algebro-geometricheskoe postroenie uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, Dokl. AN SSSR, 227:2 (1976), 291–294 | MR | Zbl

[17] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[18] Flaschka H., “On the Toda Lattice. II: Inverse-scattering solutions”, Progress Theor. Phys., 51 (1974), 703–716 | DOI | MR | Zbl

[19] Manakov S. V., “Polnaya integriruemost i stokhastizatsiya v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67 (1974), 543–555 | MR

[20] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Itogi nauk i tekhn. Sovr. probl. matem. Fundam. napr., 4, 1985, 179–285 | MR | Zbl

[21] Spiridonov V., Vinet L., Zhedanov A., “Difference Schrödinger operators with linear and exponential discrete spectra”, Lett. Math. Phys., 29 (1993), 63–73 | DOI | MR | Zbl

[22] Novikov S. P., Taimanov I. A., “Difference analogs of the harmonic oscillator”, App. II in:, [31]

[23] Atakishiev N. M., Suslov S. K., “Raznostnye analogi garmonicheskogo ostsillyatora”, TMF, 85:1 (1990), 64–73 | MR

[24] Finikov S. P., Teoriya kongruentsii, Gostekhizdat, M.–L., 1950

[25] Darboux G., Leçons sur la théorie générale des surfaces et des applications gómétriques du calcul infinitésimal, Paris, 1887–1896

[26] Tzitzéica G., Géométrie différentielle projective des réseaux, Paris–Bucharest, 1924

[27] Mikhailov A. V., “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 443–448

[28] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | Zbl

[29] Bulgadaev S., “Two-dimensional integrable field theories related with simple Lie algebras”, Phys. Lett. B, 96 (1980), 151–159 | DOI | MR

[30] Veselov A. P., Novikov S. P., “Tochno reshaemye dvumernye operatory Shrëdingera”, UMN, 50:6 (1995), 171–172 | MR | Zbl

[31] Novikov S. P., Veselov A. P., “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, Geometry, and Topoloty: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, 1997, 109–132 | Zbl

[32] Dubrovin A. B., Krichever I. M., Novikov S. P., “Uravnenie Shrëdingera v perodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[33] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye periodicheskie operatory Shrëdingera. Potentsialnye operatory”, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[34] Novikov S. P., Veselov A. P., “Two-dimensional Schrödinger operator: inverse scattering and evolutional equations”, Physica D, 18 (1986), 267–273 | DOI | MR | Zbl

[35] Bobenko A. I., “Poverkhnosti postoyannoi srednei krivizny i integriruemye uravneniya”, UMN, 46:4 (1991), 3–42 | MR

[36] Aharonov Y., Casher A., “Ground state of a spin 1/2 charged particle”, Phys. Rev. A, 19:6 (1979), 2461–2463 | DOI | MR

[37] De Vega H. J., Schaposhnik E. A., “Classical vortex solution of the Abelian Higgs model”, Phys. Rev. D, 14 (1976), 1100–1106 | DOI

[38] Novikov S. P., “Magnitno-blokhovskie funktsii i vektornye rassloeniya. Tipichnye zakony dispersii i ikh kvantovye chisla”, Dokl. AN SSSR, 257:3 (1981), 538–543 | MR | Zbl

[39] Lyskova A. S., “Ob operatore Shrëdingera v magnitnom pole”, UMN, 36:2 (1981), 189–190 | MR

[40] Krichever I. M., “Dvumernye periodicheskie raznostnye operatory i algebraicheskaya geometriya”, Dokl. AN SSSR, 285:1 (1985), 31–36 | MR | Zbl

[41] Krichever I., Lipan O., Wiegman P., Zabrodin A., Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations, Preprint

[42] Novikov S. P., “Difference analogs of Laplace transformations and two-dimensional Toda lattices”, App. I in:, [31]

[43] Novikov S. P., “Algebraicheskie svoistva dvumernykh raznostnykh operatorov”, UMN, 52:1 (1997), 225–226 | MR | Zbl

[44] Novikov S. P., Difference 2D Schrödinger operators: Algebraic symmetry and exact solvability, Preprint