Classification of sufficiently large three-dimensional manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 1029-1055 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1997_52_5_a7,
     author = {S. V. Matveev},
     title = {Classification of sufficiently large three-dimensional manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1029--1055},
     year = {1997},
     volume = {52},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1997_52_5_a7/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Classification of sufficiently large three-dimensional manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 1029
EP  - 1055
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1997_52_5_a7/
LA  - en
ID  - RM_1997_52_5_a7
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Classification of sufficiently large three-dimensional manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 1029-1055
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1997_52_5_a7/
%G en
%F RM_1997_52_5_a7
S. V. Matveev. Classification of sufficiently large three-dimensional manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 1029-1055. http://geodesic.mathdoc.fr/item/RM_1997_52_5_a7/

[1] Haken W., “Über das Homöomorphieproblem der $3$-Mannigfaltigkeiten, I”, Math. Z., 80 (1962), 89–120 | DOI | MR | Zbl

[2] Waldhausen F., “On irreducible $3$-manifolds which are sufficiently large”, Ann. of Math. Ser. 2, 87 (1968), 56–88 | DOI | MR | Zbl

[3] Waldhausen F., “Recent results on sufficiently large $3$-manifolds”, Proc. of Symp. in Pure Math. AMS, 32, 1978, 21–38 | MR | Zbl

[4] Johannson K., “Homotopy equivalences of $3$-manifolds with boundaries”, Lect. Notes in Math., 761, 1979, 1–303 | MR

[5] Johannson K., “Topologie und Geometrie von $3$-Mannigfaltigkeiten”, Jahresber. Deutsch. Math. Ver., 86 (1984), 37–68 | MR | Zbl

[6] Hemion G., “On the classification of homeomorphisms of $2$-manifolds and the classification of $3$-manifolds”, Acta Math., 142 (1979), 123–155 | DOI | MR | Zbl

[7] Hemion G., The classification of knots and $3$-dimensional spaces, Oxford Univ. Press, Oxford, 1992 | Zbl

[8] Johannson K., “Topology and combinatorics of $3$-manifolds”, Lect. Notes in Math., 1599, 1995, 1–446 | MR

[9] Thurston W., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc., 19:2 (1988), 417–431 | DOI | MR | Zbl

[10] Bestvina M., Handel M., “Train tracks for surface homeomorphisms”, Topology, 34:1 (1995), 109–140 | DOI | MR | Zbl

[11] Volodin I. A., Kuznetsov V. E., Fomenko A. T., “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, UMN, 29:5 (1974), 71–168 | MR | Zbl

[12] Homma T., Ochiai M., Takahashi M., “An algorithm for recognizing $S^3$ in $3$-manifolds with Heegaard splittings of genus two”, Osaka J. Math., 17 (1980), 625–648 | MR | Zbl

[13] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | Zbl

[14] Milnor J., “A unique factorization theorem for $3$-manifolds”, Amer. J. Math., 84 (1962), 1–7 | DOI | MR | Zbl

[15] Hempel J., $3$-Manifolds, Ann. Math. Studies, 86, 1976 | MR | Zbl

[16] Massi U., Stollings Dzh., Algebraicheskaya topologiya, Mir, M., 1977 | Zbl

[17] Haken W., “Theorie der Normalflächen. Ein Isotopiekriterium für der Kreisknoten”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl

[18] Shubert Kh., “Algoritm dlya razlozheniya zatseplenii na prostye slagaemye”, Matematika. Sb. perevodov, 10:4 (1966), 45–78

[19] Jaco W., Oertel U., “An algorithm to decide if a $3$-manifold is a Haken manifold”, Topology, 23 (1984), 195–209 | DOI | MR | Zbl

[20] Thompson A., “Thin position and the recognition problem for $S^3$”, Math. Research Letters, 1 (1994), 613–630 | MR | Zbl

[21] Matveev S. V., “Algoritm raspoznavaniya trekhmernoi sfery (po A. Tompson)”, Matem. sb., 186:5 (1995), 69–84 | MR | Zbl

[22] Casler B. G., “An embedding theorem for connected $3$-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–565 | DOI | MR

[23] Matveev S. V., “Spetsialnye ostovy kusochno-lineinykh mnogoobrazii”, Matem. sb., 92:2 (1973), 282–293 | MR | Zbl

[24] Turaev V. G., Viro O. Y., “State sum invariants of $3$-manifolds and quantum $6j$-symbol”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl

[25] Ikeda H., “Acyclic fake surfaces”, Topology, 10 (1971), 9–36 | DOI | MR | Zbl

[26] Lickorish W. B. R., “A finite set of generators for the homeotopy group of a $2$-manifold”, Proc. Cambridge Philos. Soc., 60:4 (1964), 769–778 | DOI | MR | Zbl

[27] Matveev S. V., “Slozhnost trekhmernykh mnogoobrazii i ikh perechislenie v poryadke vozrastaniya slozhnosti”, Dokl. AN SSSR, 301:2 (1988), 280–283

[28] Matveev S. V., “Complexity theory of $3$-manifolds”, Acta Appl. Math., 19:2 (1990), 124–132