@article{RM_1997_52_5_a7,
author = {S. V. Matveev},
title = {Classification of sufficiently large three-dimensional manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1029--1055},
year = {1997},
volume = {52},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1997_52_5_a7/}
}
S. V. Matveev. Classification of sufficiently large three-dimensional manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 1029-1055. http://geodesic.mathdoc.fr/item/RM_1997_52_5_a7/
[1] Haken W., “Über das Homöomorphieproblem der $3$-Mannigfaltigkeiten, I”, Math. Z., 80 (1962), 89–120 | DOI | MR | Zbl
[2] Waldhausen F., “On irreducible $3$-manifolds which are sufficiently large”, Ann. of Math. Ser. 2, 87 (1968), 56–88 | DOI | MR | Zbl
[3] Waldhausen F., “Recent results on sufficiently large $3$-manifolds”, Proc. of Symp. in Pure Math. AMS, 32, 1978, 21–38 | MR | Zbl
[4] Johannson K., “Homotopy equivalences of $3$-manifolds with boundaries”, Lect. Notes in Math., 761, 1979, 1–303 | MR
[5] Johannson K., “Topologie und Geometrie von $3$-Mannigfaltigkeiten”, Jahresber. Deutsch. Math. Ver., 86 (1984), 37–68 | MR | Zbl
[6] Hemion G., “On the classification of homeomorphisms of $2$-manifolds and the classification of $3$-manifolds”, Acta Math., 142 (1979), 123–155 | DOI | MR | Zbl
[7] Hemion G., The classification of knots and $3$-dimensional spaces, Oxford Univ. Press, Oxford, 1992 | Zbl
[8] Johannson K., “Topology and combinatorics of $3$-manifolds”, Lect. Notes in Math., 1599, 1995, 1–446 | MR
[9] Thurston W., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc., 19:2 (1988), 417–431 | DOI | MR | Zbl
[10] Bestvina M., Handel M., “Train tracks for surface homeomorphisms”, Topology, 34:1 (1995), 109–140 | DOI | MR | Zbl
[11] Volodin I. A., Kuznetsov V. E., Fomenko A. T., “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, UMN, 29:5 (1974), 71–168 | MR | Zbl
[12] Homma T., Ochiai M., Takahashi M., “An algorithm for recognizing $S^3$ in $3$-manifolds with Heegaard splittings of genus two”, Osaka J. Math., 17 (1980), 625–648 | MR | Zbl
[13] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | Zbl
[14] Milnor J., “A unique factorization theorem for $3$-manifolds”, Amer. J. Math., 84 (1962), 1–7 | DOI | MR | Zbl
[15] Hempel J., $3$-Manifolds, Ann. Math. Studies, 86, 1976 | MR | Zbl
[16] Massi U., Stollings Dzh., Algebraicheskaya topologiya, Mir, M., 1977 | Zbl
[17] Haken W., “Theorie der Normalflächen. Ein Isotopiekriterium für der Kreisknoten”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl
[18] Shubert Kh., “Algoritm dlya razlozheniya zatseplenii na prostye slagaemye”, Matematika. Sb. perevodov, 10:4 (1966), 45–78
[19] Jaco W., Oertel U., “An algorithm to decide if a $3$-manifold is a Haken manifold”, Topology, 23 (1984), 195–209 | DOI | MR | Zbl
[20] Thompson A., “Thin position and the recognition problem for $S^3$”, Math. Research Letters, 1 (1994), 613–630 | MR | Zbl
[21] Matveev S. V., “Algoritm raspoznavaniya trekhmernoi sfery (po A. Tompson)”, Matem. sb., 186:5 (1995), 69–84 | MR | Zbl
[22] Casler B. G., “An embedding theorem for connected $3$-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–565 | DOI | MR
[23] Matveev S. V., “Spetsialnye ostovy kusochno-lineinykh mnogoobrazii”, Matem. sb., 92:2 (1973), 282–293 | MR | Zbl
[24] Turaev V. G., Viro O. Y., “State sum invariants of $3$-manifolds and quantum $6j$-symbol”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl
[25] Ikeda H., “Acyclic fake surfaces”, Topology, 10 (1971), 9–36 | DOI | MR | Zbl
[26] Lickorish W. B. R., “A finite set of generators for the homeotopy group of a $2$-manifold”, Proc. Cambridge Philos. Soc., 60:4 (1964), 769–778 | DOI | MR | Zbl
[27] Matveev S. V., “Slozhnost trekhmernykh mnogoobrazii i ikh perechislenie v poryadke vozrastaniya slozhnosti”, Dokl. AN SSSR, 301:2 (1988), 280–283
[28] Matveev S. V., “Complexity theory of $3$-manifolds”, Acta Appl. Math., 19:2 (1990), 124–132