On the Higson–Roe corona
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 1017-1028 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1997_52_5_a6,
     author = {A. N. Dranishnikov and S. Ferry},
     title = {On the {Higson{\textendash}Roe} corona},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1017--1028},
     year = {1997},
     volume = {52},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1997_52_5_a6/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
AU  - S. Ferry
TI  - On the Higson–Roe corona
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 1017
EP  - 1028
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1997_52_5_a6/
LA  - en
ID  - RM_1997_52_5_a6
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%A S. Ferry
%T On the Higson–Roe corona
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 1017-1028
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1997_52_5_a6/
%G en
%F RM_1997_52_5_a6
A. N. Dranishnikov; S. Ferry. On the Higson–Roe corona. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 1017-1028. http://geodesic.mathdoc.fr/item/RM_1997_52_5_a6/

[1] Adams J. F., Algebraic Topology – A Student's Guide, Cambridge University Press, Cambridge, 1972 | MR

[2] Carlsson G., Pedersen E., “Controlled algebra and the Novikov conjecture for $K$ and $L$ theory”, Topology, 34 (1995), 731–758 | DOI | MR | Zbl

[3] Davis M. W., “Coxeter groups and aspherical manifolds”, Lecture Notes in Math., 1051, 1984, 197–221 | MR | Zbl

[4] Dranishnikov A. N., Ferry S., Weinberger S., “Large Riemannian manifolds which are flexible”, Ann. of Math. (2), 157:3 (2003), 919–938 | DOI | MR | Zbl

[5] Dranishnikov A. N., Keesling J. E., Uspenskij V. V., “On the Higson corona of uniformly contractible spaces”, Topology, 37:4 (1998), 791–803 | DOI | MR | Zbl

[6] Farrell F. T., Hsiang W.-C., “On Novikov conjecture for nonpositively curved manifolds”, Ann. Math., 113 (1981), 197–209 | DOI | MR

[7] Ferry S., Pedersen E., “Epsilon Surgery Theory”, London Math. Soc. Lecture Note Ser., 227, 1995, 167–226 | MR | Zbl

[8] Ferry S., Weinberger S., “A coarse approach to the Novikov Conjecture”, London Math. Soc. Lecture Note Ser., 226, 1995, 147–163 | MR | Zbl

[9] Gromov M., Geometric group theory. V. 2. Asymptotic invariants of inlnite groups, London Math. Soc. Lecture Note Ser., 182, 1993 | MR | Zbl

[10] Gromov M., “Large Riemannian manifolds”, Lecture Notes in Math., 1201, 1985, 108–122 | MR

[11] Gromov M., Lawson H. B., “Positive scalar curvature and the Dirac operator”, Publ. IHES, 58 (1983), 83–196 | MR | Zbl

[12] Higson N., On the relative K-homology theory of Baum and Douglas, Preprint, 1990

[13] Higson N., Roe J., “The Baum-Connes conjecture in coarse geometry”, LMS Lecture Notes, 227, 1995, 227–254 | MR | Zbl

[14] James I. M., “Reduced product spaces”, Ann. of Math., 62 (1955), 170–197 | DOI | MR | Zbl

[15] Keesling J., “The one-dimensional Čech cohomology of the Higson compactification and its corona”, Topology Proceedings, 19 (1994), 129–148 | MR | Zbl

[16] Roe J., Coarse cohomology and index theory for complete Riemannian manifolds, Memoirs Amer. Math. Soc., no. 497, 1993 | MR

[17] Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, 90, 1996 | MR

[18] Rosenberg J., “$C^*$-algebras, positive scalar curvature and the Novikov conjecture”, Publ. IHES, 58 (1983), 409–424 | MR | Zbl

[19] Rosenberg J., “Analytic Novikov for topologists”, LMS Lecture Notes, 226, 1995, 338–372 | MR | Zbl

[20] Yu G., “The Novikov conjecture and groups with finite asymptotic dimensions”, Ann. of Math. (2), 147:2 (1998), 325–355 | DOI | MR | Zbl