Fomenko invariants in the theory of integrable Hamiltonian systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 997-1015 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1997_52_5_a5,
     author = {A. V. Bolsinov},
     title = {Fomenko invariants in the theory of integrable {Hamiltonian} systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {997--1015},
     year = {1997},
     volume = {52},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1997_52_5_a5/}
}
TY  - JOUR
AU  - A. V. Bolsinov
TI  - Fomenko invariants in the theory of integrable Hamiltonian systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 997
EP  - 1015
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1997_52_5_a5/
LA  - en
ID  - RM_1997_52_5_a5
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%T Fomenko invariants in the theory of integrable Hamiltonian systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 997-1015
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1997_52_5_a5/
%G en
%F RM_1997_52_5_a5
A. V. Bolsinov. Fomenko invariants in the theory of integrable Hamiltonian systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 997-1015. http://geodesic.mathdoc.fr/item/RM_1997_52_5_a5/

[1] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[2] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50 (1986), 1276–1307 | MR | Zbl

[3] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | Zbl

[4] Smale S., “Topology and mechanics”, Invent. Math., 10 (1970), 305–331 | DOI | MR | Zbl

[5] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988

[6] Fomenko A. T., “Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom”, The Geometry of Hamiltonian Systems, Proc. of a Workshop (June 5–16, 1989, Berkeley, USA), Springer-Verlag, Berlin, 1991, 131–339 | MR

[7] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[8] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[9] Oshemkov A. A., “Funktsii Morsa na dvumernykh poverkhnostyakh. Kodirovanie osobennostei”, Trudy MIRAN, 205, 1994, 131–140 | Zbl

[10] Peixoto M. M., “On the classification of flows on $2$-manifolds”, Dynamical systems, Proc. Symp. Univ. of Bahia, Academic Press, New York, 1973, 389–419 | MR

[11] Meyer K. R., “Energy functions for Morse–Smale systems”, Amer. J. Math., 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[12] Waldhausen F., “Eine Klasse von $3$-Mannigfaltigkeiten”, Invent. Math., 3:4 (1967), 308–333 ; 4:2, 88–117 | DOI | MR | Zbl

[13] Bolsinov A. V., Fomenko A. T., Chang K., “Tri tipa bordizmov integriruemykh sistem s dvumya stepenyami svobody. Vychislenie grupp bordizmov”, Trudy MIRAN, 205, 1994, 32–72 | Zbl

[14] Fomenko A. T., “Theory of rough classification of integrable nondegenerate Hamiltonian differential equations on four-dimensional manifolds. Application to classical mechanics”, Adv. Soviet Math., 6 (1991), 305–345 | MR | Zbl

[15] Nguen Tien Zung, Symplectic topology of integrable Hamiltonian systems, Thesis, Strasbourg, 1994

[16] Fomenko A. T., “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Adv. Soviet Math., 6 (1991), 1–36 | MR

[17] Lerman L. M., Umanskii Ya. L., “Structure of a Poisson action of $\mathbb R^2$ on a four-dimensional symplectic manifold. I; II”, Selecta Math. Soviet, 6:4 (1987), 365–396 ; 7:1 (1988), 39–48 | MR | Zbl | MR | Zbl

[18] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Adv. Soviet Math., 6 (1991), 147–183 | MR | Zbl

[19] Matveev V. S., “Integriruemye gamiltonovy sistemy s dvumya stepenyami svobody. Topologicheskoe stroenie nasyschennykh okrestnostei tochek tipa fokus-fokus i sedlo-sedlo”, Matem. sb., 187:4 (1996), 29–58 | MR | Zbl

[20] Matveev V. S., “Vychislenie znachenii invarianta Fomenko dlya tochki tipa sedlo-sedlo integriruemoi gamiltonovoi sistemy”, Trudy seminara po vekt. i tenz. analizu, no. 24, Izd–vo MGU, M., 1993, 75–104

[21] Kalashnikov V. V., A class of generic integrable Hamiltonian systems with two degrees of freedom, Preprint No 907, Univ. of Utrecht, Dept. of Math., 1995

[22] Nguen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compositio Math. (to appear)

[23] Nguen Tien Zung, “A note on focus-focus singularities”, Differential Geom. Appl. (to appear)

[24] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Adv. Soviet Math., 6 (1991), 67–146 | MR | Zbl

[25] Selivanova E. N., “Klassifikatsiya geodezicheskikh potokov liuvillevykh metrik na dvumernom tore s tochnostyu do topologicheskoi ekvivalentnosti”, Matem. sb., 183:4 (1992), 69–86

[26] Nguen Tien Zung, Polyakova L. S., “A topological classification of integrable geodesic flows on the two-dimensional sphere with an additional integral quadratic in the momenta”, J. Nonlinear Sci., 3:1 (1993), 85–108 | DOI | MR

[27] Duistermaat J. J., “On global action-angle variables”, Comm. Pure Appl. Math., 33 (1980), 678–706 | DOI | MR

[28] Audin M., The Topology of Torus Action on Symplectic Manifold, Birkhäuser, Basel, 1991 | Zbl

[29] Bolsinov A. V., “Gladkaya traektornaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Matem. sb., 186:1 (1995), 3–28 | MR | Zbl

[30] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 | Zbl

[31] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya geodezicheskikh potokov dvumernykh ellipsoidov. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR | Zbl

[32] Bolsinov A. V., Fomenko A. T., “Traektornye invarianty integriruemykh gamiltonovykh sistem. Sluchai prostykh sistem. Traektornaya klassifikatsiya sistem tipa Eilera v dinamike tverdogo tela”, Izv. RAN. Ser. matem., 59:1 (1995), 65–102 | MR | Zbl

[33] Orel O. E., “Vektor vrascheniya dlya integriruemykh zadach, svodyaschikhsya k uravneniyam Abelya. Traektornaya klassifikatsiya sistem Goryacheva–Chaplygina”, Matem. sb., 186:2 (1995), 105–120 | MR

[34] Orel O. E., Takakhashi Sh., “Traektornaya klassifikatsiya integriruemykh zadach Lagranzha i Goryacheva–Chaplygina metodami kompyuternogo analiza”, Matem. sb., 187:1 (1996), 95–112 | MR | Zbl

[35] Selivanova E. N., “Traektornye izomorfizmy liuvillevykh sistem na dvumernom tore”, Matem. sb., 1995, no. 10, 141–160 | MR | Zbl

[36] Adler M., van Moerbeke P., “The Kowalewski and Henon-Heiles motions as Manakov geodesic flows on $\operatorname{SO}(4)$. A two-dimensional family of Lax pairs”, Comm. Math. Phys., 113:4 (1988), 659–700 | DOI | MR

[37] Veselov A. P., “Two remarks about the connection of Jacobi and Neumann integrable systems”, Math. Z., 216 (1994), 337–345 | DOI | MR | Zbl

[38] Knorrer H., “Geodesics on quadrics and a mechanical problem of C. Neumann”, J. Reine Angew. Math., 334 (1982), 69–78 | MR

[39] Kozlov V. V., “Dve integriruemye zadachi klassicheskoi dinamiki”, Vestnik MGU. Ser. 1. Matem., mekh., 1981, no. 4, 80–83 | MR | Zbl

[40] Yakobi K., Lektsii po dinamike, M.–L., 1936

[41] Arkhangelskii Yu. A., Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977

[42] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980 | Zbl