Geometry and topology of complex hyperbolic and Cauchy–Riemannian manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 895-928 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1997_52_5_a2,
     author = {B. N. Apanasov},
     title = {Geometry and topology of complex hyperbolic and {Cauchy{\textendash}Riemannian} manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {895--928},
     year = {1997},
     volume = {52},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1997_52_5_a2/}
}
TY  - JOUR
AU  - B. N. Apanasov
TI  - Geometry and topology of complex hyperbolic and Cauchy–Riemannian manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 895
EP  - 928
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1997_52_5_a2/
LA  - en
ID  - RM_1997_52_5_a2
ER  - 
%0 Journal Article
%A B. N. Apanasov
%T Geometry and topology of complex hyperbolic and Cauchy–Riemannian manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 895-928
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1997_52_5_a2/
%G en
%F RM_1997_52_5_a2
B. N. Apanasov. Geometry and topology of complex hyperbolic and Cauchy–Riemannian manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 5, pp. 895-928. http://geodesic.mathdoc.fr/item/RM_1997_52_5_a2/

[1] Ahlfors L. V., “Fundamental polyhedra and limit point sets of Kleinian groups”, Proc. Nat. Acad. Sci. USA, 55 (1966), 251–254 | DOI | MR | Zbl

[2] Apanasov B., Discrete groups in Space and Uniformization Problems, Math. and Appl., 40, Kluwer Academic Publishers, Dordrecht, 1991 | MR | Zbl

[3] Apanasov B., “Nontriviality of Teichmüller space for Kleinian group in space”, Riemann Surfaces and Related Topics, Proc. 1978 Stony Brook Conference, Ann. of Math. Studies, 97, eds. I. Kra and B. Maskit, Princeton Univ. Press, Princeton, 1981, 21–31 | MR

[4] Apanasov B., “Geometrically finite hyperbolic structures on manifolds”, Ann. of Glob. Analysis and Geom., 1:3 (1983), 1–22 | DOI | MR | Zbl

[5] Apanasov B., “Thurston's bends and geometric deformations of conformal structures”, Complex Analysis and Applications'85, Publ. Bulgarian Acad. Sci., Sofia, 1986, 14–28 | MR

[6] Apanasov B., “Nonstandard uniformized conformal structures on hyperbolic manifolds”, Invent. Math., 105 (1991), 137–152 | DOI | MR | Zbl

[7] Apanasov B., “Deformations of conformal structures on hyperbolic manifolds”, J. Diff. Geom., 35 (1992), 1–20 | MR | Zbl

[8] Apanasov B., “Canonical homeomorphisms in Heisenberg group induced by isomorphisms of discrete subgroups of $PU(n,1)$”, Dokl. Math., 56:2 (1997), 757–760 | Zbl

[9] Apanasov B., “Quasiconformality and geometrical finiteness in Carnot–Carathéodory and negatively curved spaces”, Geometry, Topology and Physics, eds. K. Uhlenbeck, a.o., W. de Gruyter, Berlin, 1997, 25–44 ; MSRI at Berkeley http://www.msri.org /MSRI-preprints/online/1996-019.html | MR

[10] Apanasov B., Conformal geometry of discrete groups and manifolds, de Gruyter Expositions in Mathematics, 32, W. de Gruyter, Berlin, 2000 | MR

[11] Apanasov B., “Bending deformations of complex hyperbolic surfaces”, J. Reine Angew. Math., 492 (1997), 75–91 ; Preprint 062, Math. Sci. Res. Inst., Berkeley, 1996; http://www.msri.org/MSRI-preprints/online/ /1996-062.html | MR | Zbl

[12] Apanasov B., Carneiro M., Gusevskii N., Some deformations of complex hyperbolic surfaces, to appear

[13] Apanasov B., Gusevskii N., The boundary of Teichmüller space of complex hyperbolic surfaces, to appear

[14] Apanasov B., Xie X., “Geometrically finite complex hyperbolic manifolds”, Intern. J. Math., 8 (1997), 703–757 | DOI | MR | Zbl

[15] Apanasov B., Xie X., “Manifolds of negative curvature and nilpotent groups”, Comlex Analysis, Differemtial Geometry and Mathematical Physics, Proc. of the third Intern. Workshop at Varna, eds. K. Sekigawa, S. Dimiev, World Scientific, Singapore, 1997, 105–115 | MR | Zbl

[16] Apanasov B., Tetenov A., “Nontrivial cobordisms with geometrically finite hyperbolic structures”, J. Diff. Geom., 28 (1988), 407–422 | MR | Zbl

[17] Ballmann W., Gromov M., Schroeder V., Manifolds of Nonpositive Curvature, Birkhäuser, Boston, 1985 | MR | Zbl

[18] Beardon A. F., Maskit B., “Limit points of Kleinian groups and finite sided fundamental polyhedra”, Acta Math., 132 (1974), 1–12 | DOI | MR | Zbl

[19] Belegradek I., Discrete surface groups actions with accidental parabolics on complex hyperbolic plane, Preprint, Univ. of Maryland

[20] Bižaca \v Z., Etnyre J., Smooth structures on collarable ends of $4$-manifolds, Preprint, 1996 | MR

[21] Borel A., “Compact Clifford–Klein forms of symmetric spaces”, Topol., 2 (1962), 111–122 | DOI | MR

[22] Bowditch B., “Geometrical finiteness with variable negative curvature”, Duke J. Math., 77 (1995), 229–274 | DOI | MR | Zbl

[23] Brown M., “The monotone union of open $n$-cells is an open $n$-cell”, Proc. Amer. Math. Soc., 12 (1961), 812–814 | DOI | MR | Zbl

[24] Burns D., Shnider S., “Spherical hypersurfaces in complex manifolds”, Inv. Math., 33 (1976), 223–246 | DOI | MR | Zbl

[25] Burns D., Mazzeo R., “On the geometry of cusps for $SU(n,1)$”, Manifolds and Geometry, Cambridge University Press, 1996, 112–131 | MR | Zbl

[26] Buser P., Karcher H., Gromov's almost flat manifolds, Astérisque, 81, 1981, 148 | MR | Zbl

[27] Cannon J. W., “The combinatorial structure of cocompact discrete hyperbolic groups”, Geom. Dedicata, 16 (1984), 123–148 | DOI | MR | Zbl

[28] Cartan É., “Sur le groupe de la géométrie hypersphérique”, Comm. Math. Helv., 4 (1932), 158–171 | MR

[29] Chen S., Greenberg L., “Hyperbolic spaces”, Contributions to Analysis, Academic Press, New York, 1974, 49–87 | MR

[30] Corlette K., “Hausdorff dimensions of limit sets”, Invent. Math., 102 (1990), 521–542 | DOI | MR

[31] Corlette K., “Archimedian superrigidity and hyperbolic geometry”, Ann. of Math., 135 (1992), 165–182 | DOI | MR | Zbl

[32] Cygan J., “Wiener's test for Brownian motion on the Heisenberg group”, Colloquium Math., 39 (1978), 367–373 | MR | Zbl

[33] Epstein C., Melrose R., Mendoza G., “Resolvent of the Laplacian on strictly pseudoconvex domains”, Acta Math., 167 (1991), 1–106 | DOI | MR | Zbl

[34] Filipkiewicz R. P., Four-dimensional geometries, Ph.D. Thesis, Univ. of Warwick, 1984

[35] Falbel E., Gusevskii N., “Spherical $CR$-manifolds of dimension $3$”, Bol. Soc. Bras. Mat., 25 (1994), 31–56 | DOI | MR | Zbl

[36] Fintushel R., Stern R., “Homotopy $K3$ surfaces containing $\Sigma(2,3,7)$”, J. Diff. Geom., 34 (1991), 255–265 | MR | Zbl

[37] Fintushel R., Stern R., “Using Floer's exact triangle to compute Donaldson invariants”, The Floer memorial volume, Progr. Math, 133, Birkhäuser, Basel, 1995, 435–444 | MR | Zbl

[38] Fintushel R., Stern R., “Surgery in cusp neighborhoods and the geography of irreducible 4-manifolds”, Invent. Math., 117 (1994), 455–523 | DOI | MR | Zbl

[39] Freedman M. H., Taylor L., “$\Lambda$-splitting $4$-manifolds”, Topology, 16 (1977), 181–184 | DOI | MR | Zbl

[40] Goldman W., “Representations of fundamental groups of surfaces”, Geometry and Topology, Lect. Notes Math, 1167, 1985, 95–117 | MR | Zbl

[41] Goldman W., “Geometric structures on manifolds and varieties of representations”, Geometry of Group Representations, Contemp. Math., 74, 1988, 169–198 | MR | Zbl

[42] Goldman W., “Complex hyperbolic Kleinian groups”, Complex geometry and related topics, LNM, Lect. Notes Math, 1991, 31–52 | MR

[43] Goldman W., Complex hyperbolic geometry, Oxford Mathematical Monographs, Oxford Univ. Press, Oxford, 1999 | MR | Zbl

[44] Goldman W., Kapovich M., Leeb B., “Complex hyperbolic manifolds homotopy equivalent to a Riemann surface”, Comm. Anal. Geom., 9 (2001), 61–95 | MR | Zbl

[45] Goldman W., Millson J., “Local rigidity of discrete groups acting on complex hyperbolic space”, Invent. Math., 88 (1987), 495–520 | DOI | MR | Zbl

[46] Goldman W., Parker J., “Dirichlet polyhedron for dihedral groups acting on complex hyperbolic space”, J. Geom. Analysis, 2:6 (1992), 517–554 | MR | Zbl

[47] Goldman W., Parker J., “Complex hyperbolic ideal triangle groups”, J. Reine Angew. Math., 425 (1992), 71–86 | MR | Zbl

[48] Gromov M., “Almost flat manifolds”, J. Diff. Geom., 13 (1978), 231–241 | MR | Zbl

[49] Gusevskii N., Colloquium talk, Univ. of Oklahoma, Norman, 1995

[50] Heintze E., Hof H.-C. I., “Geometry of horospheres”, J. Diff. Geom., 12 (1977), 481–491 | MR | Zbl

[51] Johnson D., Millson J., “Deformation spaces associated to compact hyperbolic manifolds”, Discrete Groups in Geometry and Analysis, Birkhäuser, Boston, 1987, 48–106 | MR | Zbl

[52] Kobayashi Sh., Hyperbolic manifolds and holomorphic mappings, Dekker, New York, 1970 | MR | Zbl

[53] Koranyi A., Reimann M., “Quasiconformal mappings on the Heisenberg group”, Invent. Math., 80 (1985), 309–338 | DOI | MR | Zbl

[54] Kourouniotis Ch., “Deformations of hyperbolic structures”, Math. Proc. Cambr. Phil. Soc., 98 (1985), 247–261 | DOI | MR | Zbl

[55] Krushkal' S., Apanasov B., Gusevskii N., Kleinian groups and uniformization in examples and problems, Trans. Math. Monographs, 62, Amer. Math. Soc., Providence, 1986 | MR | Zbl

[56] LeBrun C., “Einstein metrics and Mostow rigidity”, Math. Res. Lett., 2:1 (1995), 1–8 | MR | Zbl

[57] Looijenga E., “The smoothing components of a triangle singularity”, Proc. Symp. Pure Math., 40 (1983), 173–184 | MR

[58] Marden A., “The geometry of finitely generated Kleinian groups”, Ann. of Math., 99 (1974), 383–462 | DOI | MR | Zbl

[59] Margulis G., “Discrete groups of motions of manifolds of nonpositive curvature”, Amer. Math. Soc. Translations, 109 (1977), 33–45 | MR | Zbl

[60] Margulis G., “Free properly discontinuous groups of affine transformations”, Dokl. Acad. Sci. USSR, 272 (1983), 937–940 | MR

[61] Matveyev R., “A decomposition of smooth simply-connected $h$-cobordant 4-manifolds”, J. Differential Geom., 44:3 (1996), 571–582 | MR | Zbl

[62] Milnor J., “On the 3-dimensional Brieskorn manifolds $M(p,q,r)$”, Knots, groups and $3$-manifolds, Ann. of Math. Studies, 84, Princeton Univ. Press, Princeton, 1975, 175–225 | MR

[63] Miner R., “Quasiconformal equivalence of spherical $CR$ manifolds”, Ann. Acad. Sci. Fenn. Ser. A I Math., 19 (1994), 83–93 | MR | Zbl

[64] Mostow G. D., Strong rigidity of locally symmetric spaces, Princeton Univ. Press, Princeton, 1973 | MR | Zbl

[65] Mostow G. D., “On a remarkable class of polyhedra in complex hyperbolic space”, Pacific J. Math., 86 (1980), 171–276 | MR | Zbl

[66] Myers R., “Homology cobordisms, link concordances, and hyperbolic 3-manifolds”, Trans. Amer. Math. Soc., 278 (1983), 271–288 | DOI | MR | Zbl

[67] Napier T., Ramachandran M., “Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems”, Geom. Funct. Anal., 5 (1995), 807–851 | DOI | MR

[68] Napier T., Ramachandran M., “The $L^2$ $\overline\partial$-method, weak Lefschetz theorems, and topology of Kähler manifolds”, J. Amer. Math. Soc., 11:2 (1998), 375–396 | DOI | MR | Zbl

[69] Pansu P., “Métriques de Carnot-Carathéodory et quasiisométries des espaces symmétries de rang un”, Ann. of Math., 129 (1989), 1–60 | DOI | MR | Zbl

[70] Parker J., “Shimizu's lemma for complex hyperbolic space”, Intern. J. Math., 3:2 (1992), 291–308 | DOI | MR | Zbl

[71] Parker J., Private communication, 1995

[72] Phillips M. B., “Dirichlet polyhedra for cyclic groups in complex hyperbolic space”, Proc. Amer. Math. Soc., 115 (1992), 221–228 | DOI | MR | Zbl

[73] Raymond F., Vasquez A. T., “3-manifolds whose universal coverings are Lie groups”, Topology Appl., 12 (1981), 161–179 | DOI | MR | Zbl

[74] Saveliev N., Floer homology and $3$-manifold invariants, Thesis, Univ. of Oklahoma at Norman, 1995

[75] Sullivan D. P., “Discrete conformal groups and measurable dynamics”, Bull. Amer. Math. Soc., 6 (1982), 57–73 | DOI | MR | Zbl

[76] Sullivan D. P., “Quasiconformal homeomorphisms and dynamics. II: Structural stability implies hyperbolicity for Kleinian groups”, Acta Math., 155 (1985), 243–260 | DOI | MR | Zbl

[77] Tetenov A., “Infinitely generated Kleinian groups in space”, Siberian Math. J., 21 (1980), 709–717 | DOI | MR

[78] Tetenov A., “The discontinuity set for a Kleinian group and topology of its Kleinian manifold”, Intern. J. Math., 4:1 (1993), 167–177 | DOI | MR | Zbl

[79] Thurston W., The geometry and topology of three-manifolds, Lect. Notes, Princeton Univ. Press, Princeton, 1981

[80] Toledo D., “Representations of surface groups on complex hyperbolic space”, J. Diff. Geom., 29 (1989), 125–133 | MR | Zbl

[81] Tukia P., “On isomorphisms of geometrically finite Kleinian groups”, Publ. Math. IHES, 61 (1985), 171–214 | MR | Zbl

[82] Vodopyanov S. K., “Quasiconformal mappings on Carnot groups”, Russian Dokl. Math., 347 (1996), 439–442 | MR

[83] Wall C. T. C., “Geometric structures on compact complex analytic surfaces”, Topology, 25 (1986), 119–153 | DOI | MR | Zbl

[84] Weil A., “Remarks on the cohomology of groups”, Ann. of Math., 80 (1964), 149–157 | DOI | MR | Zbl

[85] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796 | MR | Zbl

[86] Wolf J. A., Spaces of constant curvature, Publ. or Perish, Berkeley, 1977 | MR

[87] Yau S. T., “Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci., 74 (1977), 1798–1799 | DOI | MR | Zbl

[88] Yue Ch., “Dimension and rigidity of quasi-Fuchsian representations”, Ann. of Math., 143 (1996), 331–355 | DOI | MR | Zbl

[89] Yue Ch., “Mostow rigidity of rank $1$ discrete groups with ergodic Bowen–Margulis measure”, Invent. Math., 125 (1996), 75–102 | DOI | MR | Zbl

[90] Yue Ch., Private communication, Norman/OK, 1996