The Alexander polynomial in several variables can be expressed in terms of the Vassiliev invariants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 1, pp. 219-221
@article{RM_1997_52_1_a3,
author = {I. A. Dynnikov},
title = {The {Alexander} polynomial in several variables can be expressed in terms of the {Vassiliev} invariants},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {219--221},
year = {1997},
volume = {52},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1997_52_1_a3/}
}
TY - JOUR AU - I. A. Dynnikov TI - The Alexander polynomial in several variables can be expressed in terms of the Vassiliev invariants JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1997 SP - 219 EP - 221 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_1997_52_1_a3/ LA - en ID - RM_1997_52_1_a3 ER -
%0 Journal Article %A I. A. Dynnikov %T The Alexander polynomial in several variables can be expressed in terms of the Vassiliev invariants %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1997 %P 219-221 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/RM_1997_52_1_a3/ %G en %F RM_1997_52_1_a3
I. A. Dynnikov. The Alexander polynomial in several variables can be expressed in terms of the Vassiliev invariants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 1, pp. 219-221. http://geodesic.mathdoc.fr/item/RM_1997_52_1_a3/
[1] Vassiliev V. A., “Cohomology of knot spaces”, Theory of singularities and its Applications, ed. V. I. Arnold, Amer. Math. Soc., Providence, 1990
[2] Bar-Natan D., Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl
[3] Birman J. S., Lin X-S., Knot polynomials and Vassiliev's invariants, Preprint, Colombia Univ., 1991
[4] Murakami J., Pacific J. Math., 157:1 (1993), 109–135 | MR | Zbl
[5] Torres G., Ann. of Math., 57:1 (1953), 57–89 | DOI | MR | Zbl