Secants of Abelian varieties, theta functions, and soliton equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 1, pp. 147-218
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1997_52_1_a2,
     author = {I. A. Taimanov},
     title = {Secants of {Abelian} varieties, theta functions, and soliton equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {147--218},
     year = {1997},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1997_52_1_a2/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Secants of Abelian varieties, theta functions, and soliton equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 147
EP  - 218
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1997_52_1_a2/
LA  - en
ID  - RM_1997_52_1_a2
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Secants of Abelian varieties, theta functions, and soliton equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 147-218
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1997_52_1_a2/
%G en
%F RM_1997_52_1_a2
I. A. Taimanov. Secants of Abelian varieties, theta functions, and soliton equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 52 (1997) no. 1, pp. 147-218. http://geodesic.mathdoc.fr/item/RM_1997_52_1_a2/

[1] Andreotti A., Mayer A. L., “On period relations for abelian integrals on algebraic curves”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 21:2 (1967), 189–238 | MR | Zbl

[2] Arbarello E., De Concini C., “On a set of equations characterizing Riemann matrices”, Ann. of Math., 120 (1984), 119–140 | DOI | MR | Zbl

[3] Arbarello E., De Concini C., “Another proof of a conjecture of S. P. Novikov on periods of abelian integrals on Riemann surfaces”, Duke Math. J., 54 (1987), 163–178 | DOI | MR | Zbl

[4] Baker H. F., Abel's theorem and the allied theory including the theory of theta functions, Cambridge Univ. Press, Cambridge, 1897

[5] Beauville A., “Prym varieties and the Schottky problem”, Invent. Math., 41 (1977), 149–196 | DOI | MR | Zbl

[6] Beauville A., Debarre O., “Une relation entre deux approches du problm̀e de Schottky”, Invent. Math., 86 (1986), 195–207 | DOI | MR | Zbl

[7] Beauville A., Debarre O., “Sur le problème de Schottky pour les variétés de Prym”, Ann. Scuola Norm. Super. Pisa. Ser. IV, XIV (1987), 613–623 | MR

[8] Belokolos E. D., Bobenko A. I., Matveev V. B., Enolskii V. Z., “Algebrogeometricheskie printsipy superpozitsii konechnozonnykh reshenii integriruemykh nelineinykh uravnenii”, UMN, 41:2 (1986), 3–42 | MR | Zbl

[9] Belokolos E. D., Enolskii V. Z., “Obobschennyi anzatts Lemba”, TMF, 53:2 (1982), 271–282 | MR | Zbl

[10] Bobenko A. I., “Veschestvennye algebrogeometricheskie resheniya uravneniya Landau–Lifshitsa v teta-funktsiyakh Prima”, Funkts. analiz i ego pril., 19:1 (1985), 6–19 | MR | Zbl

[11] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Hyperelliptic Kleinian functions and applications”, Proceedings of the Novikov seminar, Translations of the Amer. Math. Soc. (to appear)

[12] Bukhshtaber V. M., Krichever I. M., “Vektornye teoremy slozheniya i funktsii Beikera–Akhiezera”, TMF, 94:2 (1993), 202–212 | MR

[13] Buchstaber V. M., Krichever I. M., “Multi-dimensional vector addition theorems and the Riemann theta functions”, International Mathematical Research Notes (to appear)

[14] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators. I; II; III”, Proc. London Math. Soc., 21 (1922), 420–440 ; Proc. Royal Soc. London (A), 118 (1928), 557–583 ; Proc. Royal Soc. London (A), 134 (1931), 471–485 | DOI | Zbl

[15] Buser P., Sarnak P., “On the period matrix of a Riemann surface of large genus”, with an Appendix by J. H. Conway and N. J. A. Sloane, Invent. Math., 117 (1994), 27–56 | DOI | MR | Zbl

[16] Cherednik I. V., “Ob usloviyakh veschestvennosti v “konechnozonnom” integrirovanii”, Dokl. AN SSSR, 252:5 (1980), 1104–1107 | MR

[17] Chzhen Shen-shen, Kompleksnye mnogoobraziya, IL, M., 1961

[18] Klemens G., Mozaika teorii kompleksnykh krivykh, Mir, M., 1984

[19] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. I–VII”, Proc. Japan. Acad., 57A (1981), 342–347 ; 387–392 ; J. Phys. Soc. Japan, 50 (1981), 3806–3812 ; Physica D, 4 (1982), 343–365 ; Publ. RIMS, 18 (1982), 1111–1119 ; J. Phys. Soc. Japan, 50 (1981), 3813–3818 ; Publ. RIMS, 18 (1982), 1077–1110 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[20] Date E., Jimbo M., Kashiwara M., Miwa T., “Landau-Lifshitz equation: solitons, quasi-periodic solutions and infinite dimensional Lie algebras”, J. Phys. A, 16 (1983), 221–236 | DOI | MR | Zbl

[21] Debarre O., “The trisecant conjecture for Pryms”, Proceedings of Symposia in Pure Math., 49, Part 1, Providence, 1989, 621–626 | MR | Zbl

[22] Debarre O., “Trisecant lines and Jacobians”, J. Algebr. Geom., 1 (1992), 5–14 | MR | Zbl

[23] Donagi R., “Big Schottky”, Invent. Math., 89 (1987), 568–599 | DOI

[24] Donagi R., Markman E., “Spectral curves, algebraically completely integrable Hamiltonian systems, and moduli of bundles”, , Lect. Notes in Math. (to appear) E-print alg-geom/9507017

[25] Donagi R., Smith R., “The structure of the Prym map”, Acta Math., 146 (1981), 25–102 | DOI | MR | Zbl

[26] Drinfeld V. G., “O kommutativnykh podkoltsakh nekotorykh nekommutativnykh kolets”, Funkts. analiz i ego pril., 11:1 (1977), 11–14 | MR | Zbl

[27] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[28] Dubrovin B. A., “Uravnenie Kadomtseva–Petviashvili i sootnosheniya mezhdu matritsami periodov na rimanovykh poverkhnostyakh”, Izv. AN SSSR. Ser. matem., 45 (1981), 1015–1028 | MR | Zbl

[29] Dubrovin B. A., Krichever I. M., Novikov S. P., “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–19 | MR

[30] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179–285 | MR

[31] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[32] Dubrovin B. A., Natanzon S. M., “Veschestvennye dvukhzonnye resheniya uravneniya sine-Gordon”, Funkts. analiz i ego pril., 16:1 (1982), 27–43 | MR | Zbl

[33] Dubrovin B. A., Novikov S. P., “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 531–534 | MR | Zbl

[34] Farkas H., “Schottky-Jung theory”, Proceedings of Symposia in Pure Math., 49, Part 1, Providence, 1989, 459–483 | MR | Zbl

[35] Farkas H., Rauch H. E., “Period relations of Schottky type on Riemann surfaces”, Ann. of Math., 92 (1970), 434–461 | DOI | MR | Zbl

[36] Fay J. D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin, 1973 | MR | Zbl

[37] Fay J. D., “Schottky relations on $\frac12(C-C)$”, Proceedings of Symposia in Pure Math., 49, Part 1, Providence, 1989, 485–502 | MR | Zbl

[38] Friedman R., Smith R., “The generic Torelli theorem for the Prym map”, Invent. Math., 64 (1982), 473–490 | DOI

[39] van Geemen B., “Siegel modular forms vanishing on the moduli space of curves”, Invent. Math., 78 (1984), 615–642

[40] van Geemen B., van der Geer G., “Kummer varieties and the moduli spaces of Abelian varieties”, Amer. J. Math., 108 (1986), 615–641 | DOI | MR | Zbl

[41] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982

[42] Grinevich P. G., “Ratsionalnye resheniya uravnenii kommutatsii differentsialnykh operatorov”, Funkts. analiz i ego pril., 16:1 (1982), 19–24 | MR | Zbl

[43] Grinevich P. G., “Vektornyi rang kommutiruyuschikh matrichnykh differentsialnykh operatorov. Dokazatelstvo kriteriya S. P. Novikova”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 458–478 | MR | Zbl

[44] Gunning R. C., “On generalized theta functions”, Amer. J. Math., 103 (1981), 411–435 | DOI | MR

[45] Gunning R. C., “Some curves in Abelian varieties”, Invent. Math., 66 (1982), 377–389 | DOI | MR | Zbl

[46] Gunning R. C., “Riemann surfaces and their associated Wirtinger varieties”, Bull. Amer. Math. Soc., 11 (1984), 287–316 | DOI | MR | Zbl

[47] Gunning R. C., “Some identities for Abelian integrals”, Amer. J. Math., 108 (1986), 39–74 | DOI | MR | Zbl

[48] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969

[49] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | Zbl

[50] Hirota R., “Direct methods of finding exact solutions of nonlinear evolution equations”, Bäcklund transformations, the inverse scattering method, solitons, and their applications, Lecture Notes in Math., 515, Springer-Verlag, Berlin, 1976, 40–68 | MR

[51] Hirota R., “Bilinearization of soliton equations”, J. Phys. Soc. Japan, 51 (1982), 323–331 | DOI | MR

[52] Hoyt W. L., “On products and algebraic families of Jacobian varieties”, Ann. of Math., 77 (1963), 415–423 | DOI | MR | Zbl

[53] Igusa J., Theta-functions, Grundlehren der Math. Wiss., 194, Springer-Verlag, Berlin, 1972 | Zbl

[54] Igusa J., “On the irreducibility of Schottky divisor”, J. Fac. Sci. Univ. Tokyo, 28 (1981), 531–545 | MR | Zbl

[55] Its A. R., Matveev V. B., “Ob operatorakh Khilla s konechnym chislom lakun”, Funkts. analiz i ego pril., 9:1 (1975), 69–70 | MR | Zbl

[56] Jimbo M., Miwa T., “Solitons and infinite dimensional Lie algebras”, Publ. RIMS, 19 (1982), 943–1001 | DOI | MR

[57] Kats V. G., Beskonechnomernye algebry Li, Mir, M., 1993 | Zbl

[58] Kac V. G., Wakimoto M., “Exceptional hierarchies of soliton equations”, Proceedings of Symposia in Pure Math., 49, Part 1, Providence, 1989, 191–237 | MR | Zbl

[59] Kanev V., “Globalnaya teorema Torelli dlya mnogoobrazii Prima”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 244–268 | MR

[60] Kozel V. A., Kotlyarov V. P., “Pochti periodicheskie resheniya uravneniya $u_{tt}-u_{xx}=\sin u$”, Dokl. AN USSR. Ser. A, 1976, no. 10, 878–880 | MR

[61] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[62] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[63] Krichever I. M., “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[64] Krichever I. M., “Spektralnaya teoriya dvumernykh periodicheskikh operatorov i ee prilozheniya”, UMN, 44:2 (1989), 121–184 | MR | Zbl

[65] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad rimanovymi poverkhnostyami i uravnenie Kadomtseva–Petviashvili”, Funkts. analiz i ego pril., 12:4 (1978), 41–52 | MR | Zbl

[66] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[67] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[68] Lax P. D., “Periodic solutions of the KdV equations”, Lect. in Appl. Math., 15 (1974), 85–96 | MR

[69] Lax P. D., “Periodic solutions of the KdV equation”, Comm. Rure Appl. Math., 28 (1975), 141–188 | MR | Zbl

[70] Li Y., Mulase M., Category of morphisms of algebraic curves and a characterization of Prym varieties, Preprint MPI 92/24, Bonn, 1992

[71] Li Y., Mulase M., “Hitchin systems and KP equations”, Intern. J. Math., 7 (1996), 227–244 | DOI | MR | Zbl

[72] Little J., “Translation manifolds and the Schottky problem”, Proceedings of Symposia in Pure Math., 49, Part 1, Providence, 1989, 517–529 | MR | Zbl

[73] Manakov S. V., “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5 (1976), 245–246 | MR | Zbl

[74] Marchenko V. A., “Periodicheskaya zadacha Kortevega–de Frisa”, Matem. sb., 95:3 (1974), 331–356 | MR | Zbl

[75] Matsusaka T., “On a characterization of a jacobian variety”, Mem. Coll. Sci. Kyoto. Ser. A, 32 (1959), 1–19 | MR | Zbl

[76] McKean H. P., van Moerbeke P., “The spectrum of Hill's equation”, Invent. Math., 30 (1975), 217–274 | DOI | MR | Zbl

[77] Mokhov O. I., “Kommutiruyuschie obyknovennye differentsialnye operatory ranga $3$, otvechayuschie ellipticheskoi krivoi”, UMN, 37:4 (1982), 169–170 | MR | Zbl

[78] Mokhov O. I., “Kommutiruyuschie differentsialnye operatory ranga $3$ i nelineinye uravneniya”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1291–1315

[79] Mulase M., “Cohomological structure in soliton equations and Jacobian varieties”, J. Diff. Geometry, 19 (1984), 403–430 | MR | Zbl

[80] Mulase M., “Category of vector bundles on algebraic curves and infinite dimensional Grassmanians”, Intern. J. Math., 1 (1990), 293–342 | DOI | MR | Zbl

[81] Mumford D., Abelian Varieties, Tata Studies in Math., Oxford Univ. Press, Oxford, 1970 | Zbl

[82] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988

[83] Mumford D., “Prym varieties”, Contributions to analysis, A collection of papers dedicated to L. Bers, Acad. Press, New York, 1974, 325–350 | MR

[84] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equations”, Int. Symp. On Algebraic Geometry (Kyoto, 1977), Kinokunija Book Store, Tokyo, 1978, 115–153 | MR

[85] Mumford D., Fogarty J., Kirwan F., Geometric Invariant Theory, Ergebnisse der Math. und ihrer Grenzbegiete, 34, Springer-Verlag, Berlin, 1994 | Zbl

[86] Munos Porras J. M., “Geometric characterization of Jacobians and the Schottky equations”, Proceedings of Symposia in Pure Math., 49, Part 1, Providence, 1989, 541–552

[87] Nakayashiki A., “Structure of Baker-Akhiezer modules of principally polarized Abelian varieties, commuting partial differential operators and associated integrable systems”, Duke Math. J., 62 (1991), 315–358 | DOI | MR | Zbl

[88] Nakayashiki A., “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116 (1994), 65–100 | DOI | MR | Zbl

[89] Natanzon S. M., “Differentsialnye uravneniya na teta-funktsii Prima. Kriterii veschestvennosti dvumernykh konechnozonnykh potentsialnykh operatorov Shredingera”, Funkts. analiz i ego pril., 26:1 (1992), 17–26 | MR | Zbl

[90] Novikov S. P., “Periodicheskaya zadacha Kortevega–de Friza”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[91] Novikov S. P., “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 3–32

[92] Novikov S. P., Grinevich P. G., “O spektralnoi teorii kommutiruyuschikh operatorov ranga $2$ s periodicheskimi koeffitsientami”, Funkts. analiz i ego pril., 16:1 (1982), 25–26 | MR | Zbl

[93] Previato E., Wilson G., “Vector bundles over curves and solutions of the KP equation”, Proceedings of Symposia in Pure Math., 49, Part 1, Providence, 1989, 553–569 | MR | Zbl

[94] Radionov D. Yu., “K problemam Torelli i Shottki dlya mnogoobrazii Prima”, Izv. RAN. Ser. matem., 58:5 (1994), 68–84 | MR | Zbl

[95] Sasaki R., “Modular forms vanishing at the reducible points of the Siegel upperhalf space”, J. Reine Angew. Math., 345 (1983), 111–121 | MR | Zbl

[96] Schottky F., Jung H., “Neue Sätze über Symmetralfunktionen und die Abel'schen Funktionen der Riemann'schen Theorie”, Akad. Wiss. Berlin, Phys. Math. Kl., 1909, 282–297

[97] Segal G., Wilson G., “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 5–65 | Zbl

[98] Shiota T., “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83 (1986), 333–382 | DOI | MR | Zbl

[99] Shiota T., “Prym varieties and soliton equations”, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publishing, Teaneck, 1989, 407–448 | MR

[100] Shiota T., “The KP equation and the Schottky problem”, Sugaku expositions, 3 (1990), 183–211

[101] Shokurov V. V., “Mnogoobraziya Prima: teoriya i prilozheniya”, Izv. AN SSSR. Ser. matem., 47:4 (1984), 785–856 | MR

[102] Shokurov V. V., “Algebraicheskie krivye i yakobiany”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 36, VINITI, M., 1989, 233–273 | MR

[103] Taimanov I. A., “Ob analoge gipotezy Novikova v probleme tipa Rimana–Shottki dlya mnogoobrazii Prima”, Dokl. AN SSSR, 293:5 (1987), 1065–1068 | MR | Zbl

[104] Taimanov I. A., “Mnogoobraziya Prima razvetvlennykh nakrytii i nelineinye uravneniya”, Matem. sb., 181:7 (1990), 934–950 | Zbl

[105] Taimanov I. A., “Teta-funktsii Prima i ierarkhii nelineinykh uravnenii”, Matem. zametki, 50:1 (1991), 98–107 | MR | Zbl

[106] Taimanov I. A., “Uravnenie Landau–Lifshitsa i chetvernye sekuschie mnogoobrazii Prima”, Funkts. analiz i ego pril., 27:3 (1993), 90–92 | MR | Zbl

[107] S. P. Novikov (red.), Teoriya solitonov, Nauka, M., 1980

[108] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[109] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[110] Veselov A. P., Shabat A. B., “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shredingera”, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | MR | Zbl

[111] Weil A., “Zum Beweis des Torellischen Satzes”, Nachrichten der Akademie der Wissenschaften in Göttingen. Mathemathisch-Physikalische Klasse., 1957, no. 2, 33–53 | MR

[112] Welters G. E., “On flexes of the Kummer variety”, Indagationes Math., 45 (1983), 501–520 | DOI | MR | Zbl

[113] Welters G. E., “A characterization of non-hyperelliptic Jacobi varieties”, Invent. Math., 74 (1983), 437–440 | DOI | MR | Zbl

[114] Welters G. E., “A criterion for Jacobi varieties”, Ann. of Math., 120 (1984), 497–504 | DOI | MR | Zbl