An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 6, pp. 1200-1202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1996_51_6_a9,
     author = {E. I. Ganzha and S. P. Tsarev},
     title = {An algebraic formula for superposition and the completeness of the {B\"acklund} transformations of $(2+1)$-dimensional integrable systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1200--1202},
     year = {1996},
     volume = {51},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/}
}
TY  - JOUR
AU  - E. I. Ganzha
AU  - S. P. Tsarev
TI  - An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1996
SP  - 1200
EP  - 1202
VL  - 51
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/
LA  - en
ID  - RM_1996_51_6_a9
ER  - 
%0 Journal Article
%A E. I. Ganzha
%A S. P. Tsarev
%T An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1996
%P 1200-1202
%V 51
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/
%G en
%F RM_1996_51_6_a9
E. I. Ganzha; S. P. Tsarev. An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 6, pp. 1200-1202. http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/

[1] Tsarev S. P., Differentsialno-geometricheskie metody integrirovaniya sistem gidrodinamicheskogo tipa, Dis. $\dots $ dokt. fiz.-matem. nauk, M., 1993 | Zbl

[2] Athorne C., Nimmo J. J. C., Inverse Problems, 7 (1991), 809–826 | DOI | MR | Zbl

[3] Bianchi L., Lezioni di geometria differenziale, V. I, II, N. Zanichelli, Bologna, 1923–1927

[4] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910

[5] Oevel W., Rogers C., Rev. Mod. Phys., 5 (1993), 299–330 | MR | Zbl