An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 6, pp. 1200-1202
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1996_51_6_a9,
author = {E. I. Ganzha and S. P. Tsarev},
title = {An algebraic formula for superposition and the completeness of the {B\"acklund} transformations of $(2+1)$-dimensional integrable systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1200--1202},
year = {1996},
volume = {51},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/}
}
TY - JOUR AU - E. I. Ganzha AU - S. P. Tsarev TI - An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1996 SP - 1200 EP - 1202 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/ LA - en ID - RM_1996_51_6_a9 ER -
%0 Journal Article %A E. I. Ganzha %A S. P. Tsarev %T An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1996 %P 1200-1202 %V 51 %N 6 %U http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/ %G en %F RM_1996_51_6_a9
E. I. Ganzha; S. P. Tsarev. An algebraic formula for superposition and the completeness of the Bäcklund transformations of $(2+1)$-dimensional integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 6, pp. 1200-1202. http://geodesic.mathdoc.fr/item/RM_1996_51_6_a9/
[1] Tsarev S. P., Differentsialno-geometricheskie metody integrirovaniya sistem gidrodinamicheskogo tipa, Dis. $\dots $ dokt. fiz.-matem. nauk, M., 1993 | Zbl
[2] Athorne C., Nimmo J. J. C., Inverse Problems, 7 (1991), 809–826 | DOI | MR | Zbl
[3] Bianchi L., Lezioni di geometria differenziale, V. I, II, N. Zanichelli, Bologna, 1923–1927
[4] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910
[5] Oevel W., Rogers C., Rev. Mod. Phys., 5 (1993), 299–330 | MR | Zbl