@article{RM_1996_51_6_a4,
author = {V. S. Balaganskii and L. P. Vlasov},
title = {The problem of convexity of {Chebyshev} sets},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1127--1190},
year = {1996},
volume = {51},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1996_51_6_a4/}
}
V. S. Balaganskii; L. P. Vlasov. The problem of convexity of Chebyshev sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 6, pp. 1127-1190. http://geodesic.mathdoc.fr/item/RM_1996_51_6_a4/
[1] Alimov A. R., “A number of connected components of sun's complement”, East J. Approx., 1:4 (1995), 409–419 | MR
[2] Alimov A. R., “Dopolnenie k chebyshevskim mnozhestvam”, Mezhdunar. konf. po teorii pribl. funktsii, Tezisy dokladov. T. 1 (Kaluga, 26–29 iyunya 1996 g.), 1996, 10–11
[3] Alimov A. R., “Chebyshevskie mnozhestva v lineinykh prostranstvakh s nesimmetrichnoi sferoi”, Trudy 7-i Saratov. zimnei shkoly, Chast 2 (30.01–4.02, 1994), Izd-vo Saratov. un-ta, Saratov, 1995, 91–93
[4] Alimov A. R., “Chebyshev set's complement”, East J. Approx., 2:2 (1996), 215–232 | MR | Zbl
[5] Andreev V. I., “O nepreryvnosti metricheskoi proektsii i approksimativnoi kompaktnosti podprostranstv v $L_1(S,\Sigma,\mu )$”, Teoriya priblizheniya funktsii, Tr. Mezhdunar. konf. po teorii priblizheniya funktsii (Kaluga, iyul 1975), Nauka, M., 1977, 13–20
[6] Andreev V. I., “O suschestvovanii razryvnykh metricheskikh proektsii”, Matem. zametki, 16:6 (1974), 857–864 | MR | Zbl
[7] Asplund E., “Čebyšev sets in Hilbert space”, Trans. Amer. Math. Soc., 144 (1969), 235–240 | DOI | MR | Zbl
[8] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988
[9] Balaganskii V. S., “Approksimativnye svoistva mnozhestv v gilbertovom prostranstve”, Matem. zametki, 31:5 (1982), 785–800 | MR | Zbl
[10] Balaganskii V. S., “Differentsiruemost po Freshe funktsii rasstoyaniya i struktura mnozhestva”, Matem. zametki, 44:6 (1988), 725–734 | MR
[11] Balaganskii V. S., “Dostatochnye usloviya differentsiruemosti metricheskoi funktsii”, Trudy In-ta matematiki i mekhaniki, 1, UrO RAN, Ekaterinburg, 1992, 84–89 | MR
[12] Balaganskii V. S., Slabaya nepreryvnost metricheskoi proektsii, Dis. $\dots $ kand. fiz.-matem. nauk, Uralskii gos. un-t im. A. M. Gorkogo, Sverdlovsk, 1982
[13] Balaganskii V. S., “O chebyshevskikh mnozhestvakh s vypuklym dopolneniem”, Priblizhenie funktsii polinomami i splainami, Sverdlovsk, 1985, 54–57 | MR | Zbl
[14] Balaganskii V. S., “O svyazi approksimativnykh i geometricheskikh svoistv mnozhestv”, Approksimatsiya v konkretnykh i abstraktnykh banakhovykh prostranstvakh, Sb. nauchn. tr. In-ta mat. i mekh. UNTs AN SSSR, Sverdlovsk, 1987, 46–53 | MR | Zbl
[15] Balaganskii V. S., “O slaboi otkrytosti metricheskoi proektsii”, Matem. zametki, 49:3 (1991), 135–144 | MR | Zbl
[16] Balaganskii V. S., “Ob approksimativnykh svoistvakh mnozhestv s vypuklym dopolneniem”, Matem. zametki, 57:1 (1995), 20–29 | MR | Zbl
[17] Balaganskii V. S., “On the connectedness of the set of points of discontinuity of the metric projection”, East J. Approx. (to appear)
[18] Balaganskii V. S., “Antiproksiminalnye mnozhestva v prostranstvakh nepreryvnykh funktsii”, Matem. zametki (to appear)
[19] Balaganskii V. S., “An antiproximal set in a strictly convex space with Frechet differentiable norm”, East J. Approx., 2:2 (1996), 169–176 | MR
[20] Balaganskii V. S., “O slaboi nepreryvnosti metricheskoi proektsii”, Matem. zametki, 22:3 (1977), 345–356 | MR | Zbl
[21] Balaganskii V. S., “Slabaya nepreryvnost metricheskoi proektsii v banakhovykh prostranstvakh”, Matem. zametki, 24:5 (1978), 649–660 | MR | Zbl
[22] Balaganskii V. S., “Slabaya nepreryvnost metricheskoi proektsii na konechnomernye podprostranstva v $L_p(\mu )$”, Matem. zametki, 28:6 (1980), 821–832 | MR | Zbl
[23] Balaganskii V. S., “Slabaya nepreryvnost metricheskoi proektsii na ogranichennye mnozhestva v banakhovykh prostranstvakh”, Matem. zametki, 32:5 (1982), 627–637 | MR
[24] Balaganskii V. S., “Slabaya nepreryvnost metricheskoi proektsii na slabo kompaktnye mnozhestva”, Trudy In-ta matematiki i mekhaniki, 2, UrO RAN, Ekaterinburg, 1992, 42–56 | MR
[25] Balaganskii V. S., “Slabaya nepreryvnost metricheskoi proektsii na podprostranstva”, Trudy Instituta matematiki i mekhaniki, 3, UrO RAN, Ekaterinburg, 1995, 80–87 | MR
[26] Berdyshev V. I., Ustoichivost minimizatsii funktsionalov i ravnomernaya nepreryvnost metricheskoi proektsii, Dis. $\dots $ dokt. fiz.-matem. nauk, Sverdlovsk, 1987
[27] Berdyshev V. I., “Ustoichivost zadachi minimizatsii pri vozmuschenii mnozhestva dopustimykh elementov”, Matem. sb., 103 (145):4 (8) (1977), 467–479 | MR | Zbl
[28] Berens H., “Über die beste Approximation in $\mathbb R^n$” (to appear)
[29] Berens H., “Best approximation in Hilbert space”, Approximation Theory, V. III, ed. E. W. Cheney, Academic Press, New York, 1980, 1–20 | MR
[30] Berens H., On suns and co-suns in finite dimensional vector spaces, Manuscript, 1988
[31] Berens H., Westphal U., “Kodissipative metrische. Projektionen in normierten linearen Räumen”, Linear spaces and approximation, ISNM, 40, eds. P. L. Butzer and B. Sz. Nagy, Birkhäuser, Basel, 1978, 119–130 | MR
[32] Beretta L., Maxia A., “Insiemi convessi e orbiformi”, Roma Univ. Istituto Naz. Ser. 5, 1, 1940, 1–64 | MR | Zbl
[33] Bishop E., Phelps R. R., “The support functionals of a convex set”, Convexity, Proc. Symp. Pure Math., 7, Providence, 1963, 27–35 | MR | Zbl
[34] Borwein J. M., Fitzpatrick S. P., Giles J. R., “The differentiability of real functions on normed linear space using generalized subgradients”, Math. Anal. Appl., 128:2 (1987), 512–534 | DOI | MR | Zbl
[35] Bosznay A. P., “A remark on a problem of Goebel”, Annales Univ. Sci. Budapest. Sectio Math., 28 (1985), 143–145 | MR
[36] Braess D., Nonlinear Approximation Theory, Springer-Verlag, Berlin, 1986
[37] Brézis H., “Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert”, North-Holland Math. Stud., 5, 1973 | MR | Zbl
[38] Brosowski B., Deutsch F., Lambert J., Morris P. D., “Chebyshev sets which are not suns”, Math. Ann., 212:2 (1974), 89–101 | DOI | MR | Zbl
[39] Brown A. L., “Abstract Approximation Theory”, Proceedings of the Seminar in Analysis, Lecture note series, 118, Institute of Mathematical Sciences, Madras, India, 1969–70
[40] Brown A. L., “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. London Math. Soc., 41 (1980), 297–339 | DOI | MR | Zbl
[41] Brown A. L., “Chebyshev sets and the shapes of convex bodies”, Methods of Functional Analysis in Approximation Theory, Proc. Int. Conf. Indian Inst. Techn. Bombay (16–20.12.1985), Birkhäuser, Basel, 1986, 97–121
[42] Brown A. L., “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[43] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Proc. Centre Math. Analysis. Austral. Nat. Univ., 20 (1988), 1–15 | Zbl
[44] Brown A. L., “A survey: continuous selections for metric projections”, Proc. 3d Intern. Colloq. Num. Anal. (Plovdiv, Bulgaria, 13–17.08.1994), VSP, Utrecht, 1995, 25–35 | Zbl
[45] Burago Yu. D., Zalgaller V. A., “Dostatochnye priznaki vypuklosti”, Zapiski nauch. seminarov LOMI, 45, 1974, 3–52 | MR | Zbl
[46] Calabi L., Hartnett W. E., “A Motzkin-type theorem for closed nonconvex sets”, Proc. Amer. Math. Soc., 19:6 (1968), 1495–1498 | DOI | MR | Zbl
[47] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | Zbl
[48] Cudia D. F., “Rotundity”, Proc. Sympos. Pure Math., 7, 1963, 73–97 | MR | Zbl
[49] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961
[50] Deutsch F., “Existence of best approximations”, J. Approx. Theory, 28:2 (1980), 132–154 | DOI | MR | Zbl
[51] Deutsch F., “The convexity of Chebyshev sets in Hilbert space”, Topics in polynomials $\dots $ and $\dots $ applications, eds. T. Rassias, H. Srivastava, A. Yanushkauskas, World Sci. Publ., Singapore, 1993, 143–150 | MR | Zbl
[52] Deutsch F., “A survey of metric selections”, Contemp. Math., 18 (1983), 49–71 | MR | Zbl
[53] Deutsch F., “Selections for metric projections”, Approximation Theory, Spline functions and applications, ed. S. P. Singh, Kluwer Acad. Publ., Dordrecht, 1992, 123–137 | MR
[54] Deutsch F., Kenderov P., “Continuous selections and approximate selections for set-valued mappings and applications to metric projections”, SIAM J. Math. Anal., 14:1 (1983), 185–194 | DOI | MR | Zbl
[55] Deutsch F., “Best approximation in inner-product space” (to appear)
[56] Dolecki S., Greco G. H., Lechicki A., “Compactoid and compact filters”, Pacific J. Math., 117:1 (1985), 69–98 | MR | Zbl
[57] Danford N., Shvarts Dzh., Lineinye operatory, T. 1, IL, M., 1962
[58] Dudov S. I., “Differentsiruemost po napravleniyam funktsii rasstoyaniya”, Matem. sb., 186:3 (1995), 29–52 | MR | Zbl
[59] Dunham C. B., “Chebyshev sets in $C[0,1]$ which are not suns”, Canad. Math. Bull. (1), 18:1 (1975), 35–37 | MR | Zbl
[60] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979
[61] Fitzpatrick S., “Metric projections and the diiferentiability of distance functions”, Bull. Austral. Math. Soc., 22:2 (1980), 291–312 | DOI | MR | Zbl
[62] Fitzpatrick S., “Differentiation of real-valued functions and continuity of metric projections”, Proc. Amer. Math. Soc., 91:4 (1984), 544–548 | DOI | MR | Zbl
[63] Franchetti C., Papini P. L., “Approximation properties of sets with bounded complements”, Proc. Roy. Soc. Edinburgh. Sect. A, 89:1–2 (1981), 75–86 | MR | Zbl
[64] Giles J. R., Convex analysis with application in differentiation of convex functions, Research Notes in Math., 58, Pitman, London, 1982 | MR | Zbl
[65] Godini G., “On a problem of H. Berens”, Math. Ann., 263 (1983), 279–281 | DOI | MR
[66] Hetzelt L., Über die beste Coapproximation im $\mathbb R^n$, Dissertation, Univ. Erlangen-Nürnberg, 1981
[67] Hetzelt L., “On suns and cosuns in finite dimensional normed real vector spaces”, Acta Math. Hungar., 45:1–2 (1985), 53–68 | DOI | MR | Zbl
[68] Hiriart-Urruty J.-B., “New concepts in nondifferentiable programming”, Bull. Soc. Math. France, 60 (1979), 57–85 | MR | Zbl
[69] Hiriart-Urruty J.-B., Ensembles de Tchebychev vs ensembles convexes: l'état de la situation vu via l'Analyse Convexe Non Lisse, Preprint, 1995
[70] Holmes R. B., “On the continuity of the best approximation operators”, Ann. Math. Stud., 1972, no. 69, 137–157 | Zbl
[71] Huotari R., Li W., Continuities of metric projection and geometric consequences, Preprint, 1995
[72] Huotari R., Shi J., “Support cones and convexity of sets in $\mathbb R^n$”, Proc. Amer. Math. Soc. (to appear)
[73] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | Zbl
[74] Jiang M., “On Johnson's example of a nonconvex Chebyshev set”, J. Approx. Theory, 74:2 (1993), 152–158 | DOI | MR | Zbl
[75] Johnson G. G., “A nonconvex set which has the unique nearest point property”, J. Approx. Theory, 51:4 (1987), 289–332 | DOI | MR | Zbl
[76] Karlov M. I., “Nontrivial Chebyshev sets on compact connected manifolds”, East J. Approx., 1:4 (1995), 527–542 | MR | Zbl
[77] Karlov M. I., “Approksimativnye svoistva krivykh v gilbertovom prostranstve”, Trudy 7-i Saratov. zimnei shkoly, Chast 3 (30.01 – 4.02.1994), Izd-vo Saratov. un-ta, Saratov, 1995, 13–16
[78] Karlov M. I., “Approksimativnoe svoistvo kompaktnykh $C^2$-mnogoobrazii v gilbertovom prostranstve”, Mezhdunar. konf. po teorii priblizheniya funktsii, Tezisy dokladov. T. 1 (Kaluga. 26–29 iyunya 1996 g.), 1996, 112–113
[79] Karlov M. I., “Approximative properties of compact $C^2$-manifolds in Hilbert spaces”, East J. Approx., 2:2 (1996), 197–203 | MR | Zbl
[80] Kelly B. F., The convexity of Chebyshev sets in finite dimensional normed linear spaces, Masters paper, Pennsylvania St. Univ., 1978
[81] Kenderov P. S., “A note on multivalued monotone mappings”, C. R. Acad. Bulgare Sci., 28 (1975), 583–584 | MR | Zbl
[82] Klee V., “Dispersed Chebyshev sets and coverings by balls”, Math. Ann., 257:2 (1981), 251–260 | DOI | MR | Zbl
[83] Klee V., “Do infinite-dimensional Banach spaces admit nice tiling?”, Stud. Sci. Math. Hungar., 21:3–4 (1986), 415–427 | MR
[84] Konyagin S. V., Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh, Dis. $\dots $ kand. fiz.-matem. nauk, MGU, M., 1982
[85] Konyagin S. V., “Approksimativnye svoistva proizvolnykh mnozhestv v banakhovykh prostranstvakh”, DAN SSSR, 239:2 (1978), 261–264 | MR | Zbl
[86] Konyagin S. V., “Ob approksimativnykh svoistvakh zamknutykh mnozhestv v banakhovykh prostranstvakh i kharakterizatsii silno vypuklykh prostranstv”, DAN SSSR, 251:2 (1980), 276–280 | MR | Zbl
[87] Konyagin S. V., “O mnozhestve tochek razryva metricheskoi proektsii na chebyshevskie mnozhestva v gilbertovom prostranstve”, Tezisy dokladov Mezhdunar. konf. po teorii priblizheniya funktsii, T. 1 (Kaluga, 26–29 iyunya 1996 g.), 120–121
[88] Konyagin S. V., “O mnozhestvakh tochek nepustoty i nepreryvnosti metricheskoi proektsii”, Matem. zametki, 33:5 (1983), 641–655 | MR | Zbl
[89] Konyagin S. V., “O mnozhestvakh suschestvovaniya elementov nailuchshego priblizheniya”, Trudy 2-i Saratov. zimnei shkoly, Chast 2 (24.01–05.02. 1984 g.), Izd-vo Saratov. un-ta, Saratov, 1986, 136–139 | MR
[90] Konyagin S. V., “Svyaznost mnozhestv v zadachakh nailuchshego priblizheniya”, DAN SSSR, 261:1 (1981), 20–23 | MR | Zbl
[91] Konyagin S. V., “Ob approksimativnykh svoistvakh proizvolnykh zamknutykh mnozhestv v banakhovykh prostranstvakh”, Fundamentalnaya i prikladnaya matematika (to appear) | Zbl
[92] Konyagin S. V., Tsarkov I. G., “Prostranstva Efimova–Stechkina”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 5, 20–27 | MR | Zbl
[93] Koscheev V. A., “Svyaznost i nekotorye approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 17:2 (1975), 193–204 | MR | Zbl
[94] Koscheev V. A., “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 19:2 (1976), 267–278 | MR | Zbl
[95] Koscheev V. A., “Svyaznost i “solnechnye” svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Teoriya priblizheniya funktsii, Tr. Mezhdunar. konf. po teorii priblizheniya funktsii (Kaluga, iyul 1975), Nauka, M., 1977, 248–250
[96] Koscheev V. A., Svyaznost i approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh, Dis. $\dots $ kand. fiz.-matem. nauk, Uralskii gos. un-t im. A. M. Gorkogo, Sverdlovsk, 1977 | Zbl
[97] Koscheev V. A., “Primer nesvyaznogo solntsa v banakhovom prostranstve”, Matem. zametki, 26:1 (1979), 89–92 | MR | Zbl
[98] Koshcheev V. A., “On the structure of suns in Banach spaces”, Approximation and Function Spaces, Proc. Int. Conf. (Gdansk, 1979), North Holland, 1981, 371–376 | MR
[99] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966
[100] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969
[101] Lau K.-S., “Almost Chebyshev subsets in reflexive Banach spaces”, Indiana Univ. Math. J., 27:5 (1978), 791–795 | DOI | MR | Zbl
[102] Li W., “Continuous selections for metric projections and interpolating subspaces”, Approximation and Optimization, V. 1, eds. B. Brosowski, F. Deutsch, J. Guddat, Peter Lang, Frankfurt, 1991, 1–108 | Zbl
[103] Mann H., “Untersuchungen über Wabenzellen bei allgemeiner Minkowskischer Metrik”, Monatsh. Math. Phys., 42 (1937), 74–83 | DOI
[104] Marinov A. V., “Nepreryvnost i svyaznost metricheskoi $\delta $-proektsii”, Approksimatsiya v konkretnykh i abstraktnykh banakhovykh prostranstvakh, Sb. nauch. tr. In-ta mat. i mekh. UNTs AN SSSR, Sverdlovsk, 1987, 82–95 | MR | Zbl
[105] Marinov A. V., “Otsenki ustoichivosti metricheskoi $\varepsilon $-proektsii cherez modul vypuklosti prostranstva”, Trudy In-ta matematiki i mekhaniki, 2, UrO RAN, Ekaterinburg, 1992, 85–109 | MR
[106] Martynenko G. V., O strukture chebyshevskikh kompaktov v gilbertovom prostranstve, Dep. 08.09.86. No 6534-V, Tyumen. un-t, Tyumen, 1986
[107] Namioka I., Phelps R. R., “Banach spaces which are Asplund spaces”, Duke Math. J., 42:4 (1975), 735–750 | DOI | MR | Zbl
[108] Narang T. D., “A study of farthest points”, Nieuw Arch. Wiskunde (3), 25 (1977), 54–79 | MR | Zbl
[109] Narang T. D., “Convexity of Chebyshev sets”, Nieuw Arch. Wiskunde (3), 25 (1977), 377–402 | MR | Zbl
[110] Narang T. D., “Uniquely remotal sets are singletons”, Nieuw Arch. Wiskunde (4), 1 (1991), 1–12 | MR | Zbl
[111] Nevesenko N. V., “Strogie solntsa i polunepreryvnost snizu metricheskoi proektsii v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 23:4 (1978), 563–572 | MR | Zbl
[112] Nevesenko N. V., “$\rho $-nepreryvnost metricheskoi proektsii na vypuklye zamknutye mnozhestva”, Matem. zametki, 23:6 (1978), 845–854 | MR | Zbl
[113] Nevesenko N. V., “Metricheskaya proektsiya i svyaznost mnozhestv v lineinykh normirovannykh prostranstvakh”, Izv. vuzov. Matematika, 1979, no. 1 (200), 51–53 | MR | Zbl
[114] Nevesenko N. V., Oshman E. V., “Metricheskaya proektsiya na vypuklye zamknutye mnozhestva”, Matem. zametki, 31:1 (1982), 117–126 | MR | Zbl
[115] Oshman E. V., “O nepreryvnosti metricheskoi proektsii”, Matem. zametki, 37:2 (1985), 200–211 | MR | Zbl
[116] Oshman E. V., “O nepreryvnosti otobrazhenii, svyazannykh s minimizatsiei vypuklykh funktsii”, Issledovaniya po topologii i teorii operatorov, Sb. nauch. tr., Uralskii gos. un-t im. A. M. Gorkogo, Sverdlovsk, 1990, 103–108 | MR
[117] Panda B. B., Kapoor O. P., “Approximative compactness and continuity of metric projections”, Bull. Austral. Math. Soc., 11:1 (1974), 47–55 | DOI | MR | Zbl
[118] Parker M. J., “Convex sets and subharmonicity of the distance function”, Proc. Amer. Math. Soc., 103:2 (1988), 503–506 | DOI | MR | Zbl
[119] Phelps R. R., “Support cones and their generalizations”, Proc. Sympos. Pure Math., 7, 1963, 393–401 | MR | Zbl
[120] Phelps R. R., “Openness of metric projection in certain Banach spaces”, J. Approx. Theory, 42:1 (1984), 70–79 | DOI | MR | Zbl
[121] Redheffer R., Walter W., “A differential inequality for the distance function in normed linear spaces”, Math. Ann., 211:4 (1974), 299–314 | DOI | MR | Zbl
[122] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[123] Semadeni Z., Banach spaces of continuous functions, V. 1, Polish Sci. Publ., Warszawa, 1971
[124] Singer I., Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren math. Wiss., 171, Springer-Verlag, Berlin, 1970 | Zbl
[125] Singer I., “The theory of best approximation and functional analysis”, CBMS, 13, SIAM, Philadelhia, 1974 | Zbl
[126] Solovev V. N., Dvoistvennye ekstremalnye zadachi i ikh primeneniya k zadacham minimaksnogo otsenivaniya, Dis. $\dots $ dokt. fiz.-matem. nauk, MAI, M., 1996
[127] Sullivan F., “Ordering and completeness of metric spaces”, Nieuw Arch. Wiskunde. (3), 29:2 (1981), 178–193 | MR | Zbl
[128] Tikhomirov V., “Convex Analysis”, Analysis, V. II, Encyclopedia Math. Sci., ed. R. V. Gamkrelidze, Springer-Verlag, 1990
[129] Tsarkov I. G., “Ogranichennye chebyshevskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Matem. zametki, 36:1 (1984), 73–87 | MR | Zbl
[130] Tsarkov I. G., “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl
[131] Tsarkov I. G., Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh, Dis. $\dots $ kand. fiz.-matem. nauk, M., 1986
[132] Tsarkov I. G., “Lokalnaya “odnorodnost” mnozhestv edinstvennosti”, Matem. zametki, 45:5 (1989), 121–123 | MR | Zbl
[133] Tsarkov I. G., “Nepreryvnost metricheskoi proektsii, strukturnye i approksimativnye svoistva mnozhestv”, Matem. zametki, 47:2 (1990), 137–148 | MR
[134] Veselý L., “A connectedness property of maximal monotone operators and its application to approximation theory”, Proc. Amer. Math. Soc., 115:3 (1992), 663–667 | DOI | MR | Zbl
[135] Vlasov L. P., “Chebyshevskoe mnozhestvo”, Matem. Entsiklopediya, T. 5, Sov. Entsiklopediya, M., 1985
[136] Vlasov L. P., Chebyshevskie mnozhestva i ikh obobscheniya, Dis. $\dots $ kand. fiz.-matem. nauk, Uralskii gos. un-t im. A. M. Gorkogo, Sverdlovsk, 1967
[137] Vlasov L. P., “Approksimativnye svoistva mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 7:5 (1970), 593–604 | MR | Zbl
[138] Vlasov L. P., “Neskolko teorem o chebyshevskikh mnozhestvakh”, Matem. zametki, 11:2 (1972), 135–144 | MR | Zbl
[139] Vlasov L. P., “Ponyatie approksimativnoi kompaktnosti i ego varianty”, Matem. zametki, 16:2 (1974), 337–348 | MR | Zbl
[140] Vlasov L. P., “O pochti vypuklykh mnozhestvakh”, Matem. zametki, 18:3 (1975), 343–356 | MR | Zbl
[141] Vlasov L. P., “Svoistva obobschennykh elementov nailuchshego priblizheniya”, Matem. zametki, 24:4 (1978), 513–522 | MR | Zbl
[142] Vlasov L. P., “O nepreryvnosti metricheskoi proektsii”, Matem. zametki, 30:6 (1981), 813–818 | MR | Zbl
[143] Vlasov L. P., “Nepreryvnost metricheskoi proektsii na vypuklye mnozhestva”, Matem. zametki, 52:46 (1992), 3–9 | MR | Zbl
[144] Westphal U., Frerking J., “On a property of metric projections onto closed subsets of Hilbert spaces”, Proc. Amer. Math. Soc., 105:3 (1989), 644–651 | DOI | MR | Zbl
[145] Zajíček L., “On the points of multivaluedness of metric projections in separable Banach spaces”, Comment. Math. Univ. Carolin., 19:3 (1978), 513–523 | MR | Zbl
[146] Zajíček L., “On differentiation of metric projections in finite dimensional Banach spaces”, Czech. Math. J., 33 (108):3 (1983), 325–336 | MR | Zbl
[147] Zajíček L., “Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space”, Czech. Math. J., 33 (108) (1983), 292–308 | MR | Zbl
[148] Zhivkov N. V., “Metric projections and antiprojections in strictly convex normed spaces”, C. R. Acad. Bulgare Sci., 31:4 (1978), 369–372 | MR | Zbl