A complex generated by variational derivatives. A Lagrange formalism of infinite order and a generalization of Stokes's theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 6, pp. 1229-1230
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1996_51_6_a22,
author = {F. F. Voronov},
title = {A~complex generated by variational derivatives. {A~Lagrange} formalism of infinite order and a~generalization of {Stokes's} theorem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1229--1230},
year = {1996},
volume = {51},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1996_51_6_a22/}
}
TY - JOUR AU - F. F. Voronov TI - A complex generated by variational derivatives. A Lagrange formalism of infinite order and a generalization of Stokes's theorem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1996 SP - 1229 EP - 1230 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_1996_51_6_a22/ LA - en ID - RM_1996_51_6_a22 ER -
%0 Journal Article %A F. F. Voronov %T A complex generated by variational derivatives. A Lagrange formalism of infinite order and a generalization of Stokes's theorem %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1996 %P 1229-1230 %V 51 %N 6 %U http://geodesic.mathdoc.fr/item/RM_1996_51_6_a22/ %G en %F RM_1996_51_6_a22
F. F. Voronov. A complex generated by variational derivatives. A Lagrange formalism of infinite order and a generalization of Stokes's theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 6, pp. 1229-1230. http://geodesic.mathdoc.fr/item/RM_1996_51_6_a22/
[1] Voronov Th., “Geometric integration theory on supermanifolds”, Soviet Sci. Rev. Sect. C. Math. Phys. Rev., 9 (1992)
[2] Voronov F. F., Zorich A. V., Funkts. analiz i prilozh., 20:2 (1986), 58–59 | MR | Zbl
[3] John F., Duke Math. J., 4 (1938), 300–322 | DOI | MR | Zbl
[4] Gelfand I. M., Gindikin S. G., Graev M. I., Itogi nauki i tekhniki. Sovrem. probl. matem., 16, VINITI, M., 1980, 53–226
[5] Voronov Th., ; Topics in Geometry and Mathematical Physics, AMS Translations, ed. S. P. Novikov, 1996 E-print dg-ga/9603009
[6] Vinogradov A. M., J. Math. Anal. Appl., 100:1 (1984), 1–129 | DOI | MR
[7] Tulcziew W., Bull. Soc. Math. France, 105 (1977), 419–431 | MR