The rate of convergence in ergodic theorems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 4, pp. 653-703 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1996_51_4_a1,
     author = {A. G. Kachurovskii},
     title = {The rate of convergence in ergodic theorems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {653--703},
     year = {1996},
     volume = {51},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1996_51_4_a1/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
TI  - The rate of convergence in ergodic theorems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1996
SP  - 653
EP  - 703
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_1996_51_4_a1/
LA  - en
ID  - RM_1996_51_4_a1
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%T The rate of convergence in ergodic theorems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1996
%P 653-703
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/RM_1996_51_4_a1/
%G en
%F RM_1996_51_4_a1
A. G. Kachurovskii. The rate of convergence in ergodic theorems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 51 (1996) no. 4, pp. 653-703. http://geodesic.mathdoc.fr/item/RM_1996_51_4_a1/

[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 1, Vischa schkola, Kharkov, 1977

[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[3] Belyaev Yu. K., “Odin primer protsessa s peremeshivaniem”, Teoriya veroyatn. i ee primen., 6:1 (1961), 101–103 | Zbl

[4] Gaposhkin V. F., “O zavisimosti skorosti skhodimosti v usilennom zakone bolshikh chisel dlya statsionarnykh protsessov ot skorosti ubyvaniya korrelyatsionnoi funktsii”, Teoriya veroyatn. i ee primen., 26:4 (1981), 720–733 | MR | Zbl

[5] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | Zbl

[6] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[7] Ivanov V. V., “Kolebaniya srednikh v ergodicheskoi teoreme”, DAN, 347:6 (1996), 736–738 | MR | Zbl

[8] Kachurovskii A. G., “Ogranichennost fluktuatsii srednikh v ergodicheskoi teoreme Birkgofa–Khinchina”, DAN SSSR, 315:3 (1990), 530–532 | MR

[9] Kachurovskii A. G., “Fluktuatsionnaya ergodicheskaya teorema”, DAN SSSR, 317:4 (1991), 823–826 | MR

[10] Kachurovskii A. G., “Fluktuatsii srednikh v usilennom zakone bolshikh chisel”, Matem. zametki, 50:5 (1991), 151–153 | MR

[11] Kachurovskii A. G., “Fluctuations of means in the Birkhoff–Khinchin ergodic theorem”, Siberian Adv. Math., 3:2 (1993), 103–144 | MR

[12] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | Zbl

[13] Leonov V. P., “O dispersii vremennykh srednikh statsionarnogo sluchainogo protsessa”, Teoriya veroyatn. i ee primen., 6:1 (1961), 93–101 | MR | Zbl

[14] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972

[15] Petrov V. V., “Ob usilennom zakone bolshikh chisel dlya statsionarnoi posledovatelnosti”, DAN SSSR, 213:1 (1973), 42–44 | MR | Zbl

[16] Rokhlin V. A., “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, UMN, 4:2 (1949), 57–128 | MR | Zbl

[17] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, 2, Mir, M., 1967

[18] Chashka A. A., “Fluktuatsii v martingalakh”, UMN, 49:2 (1994), 179–180 | MR | Zbl

[19] Shiryaev A. N., Veroyatnost, Nauka, M., 1989

[20] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 1, 2, Mir, M., 1985

[21] Baum L. E., Katz M., Read R. R., “Exponential convergence rates for the law of large numbers”, Trans. Amer. Math. Soc., 102:2 (1962), 187–199 | DOI | MR | Zbl

[22] Baum L. E., Katz M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120:1 (1965), 108–123 | DOI | MR | Zbl

[23] Bingham N. H., “Variants on the law of the iterated logarithm”, Bull. London Math. Soc., 18 (1986), 433–467 | DOI | MR | Zbl

[24] Bishop E., “An upcrossing inequality with applications”, Michigan Math. J., 13 (1966), 1–13 | DOI | MR | Zbl

[25] Bishop E., “A constructive ergodic theorem”, J. Math. Mech., 17 (1968), 631–639 | MR | Zbl

[26] De la Torre A., “The square function for $L_1-L_\infty $ contractions”, Proc. Sympos. Pure Math., 35, Part 2, 435–438 | Zbl

[27] Halasz G., “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Hung., 28:3–4 (1976), 389–395 | MR | Zbl

[28] Jerison M., “Martingale formulation of ergodic theorems”, Proc Amer. Math. Soc., 10:4 (1959), 531–539 | DOI | MR

[29] Jones R. L., “Inequalities for the ergodic maximal function”, Stud. Math., 60:2 (1977), 111–129 | MR | Zbl

[30] Krengel U., “On the speed of convergence in the ergodic theorem”, Monatsh. Math., 86:1 (1978), 3–6 | DOI | MR | Zbl

[31] Krengel U., Ergodic Theorems, Walter de Gruyter, Berlin–New York, 1985 | Zbl

[32] Nagaev S. V., “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[33] Nelson E., “Internal set theory: a new approach to nonstandard analysis”, Bull. Amer. Math. Soc., 83:6 (1977), 1165–1198 | DOI | MR | Zbl

[34] Nelson E., Radically Elementary Probability Theory, Princeton Univ. Press, Princeton, 1987 | Zbl

[35] von Neumann J., “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI | Zbl

[36] von Neumann J., “Physical applications of the ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:3 (1932), 263–266 | DOI | Zbl

[37] O'Brien G. L., “Obtaining prescribed rates of convergence for the ergodic theorem”, Canad. J. Math., 35:6 (1983), 1129–1146 | MR | Zbl

[38] Peligrad M., “Convergence rates of the strong law for stationary mixing sequences”, Z. Wahrscheinlichkeitstheor. verw. Geb., 70:2 (1985), 307–314 | DOI | MR | Zbl

[39] Renyi A., “On stable sequences of events”, Sankhy$\overline {\mathrm a}$. Ser. A, 25 (1963), 293–302 | MR | Zbl

[40] Robinson E. A., “Sums of stationary random variables”, Proc. Amer. Math. Soc., 11:1 (1960), 77–79 | DOI | MR | Zbl

[41] Serfling R. J., “Convergence properties of $S_n$ under moment restrictions”, Ann. Math. Statist., 41:4 (1970), 1235–1248 | DOI | MR | Zbl

[42] Shao Q.-M., “Almost sure invariance principles for mixing sequences of random variables”, Stoch. Process. Appl., 48 (1993), 319–334 | DOI | MR | Zbl

[43] Smeltzer M. D., “Subadditive stochastic processes”, Bull. Amer. Math. Soc., 83 (1977), 1054–1055 | DOI | MR

[44] Utev S. A., “Sums of random variables with $\varphi $-mixing”, Siberian Adv. Math., 1:3 (1991), 124–155 | MR | Zbl

[45] Weyl H., “Über die Gleichverteilung von Zahlen mod 1”, Math. Ann., 77 (1916), 313–352 | DOI | MR

[46] Yoshimoto T., “Some inequalities for ergodic power functions”, Acta Math. Hung., 36:1–2 (1980), 1–5 | MR