A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 50 (1995) no. 1, pp. 214-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1995_50_1_a12,
     author = {V. F. Tarasov},
     title = {A~class of hypergeometric differential equations with three parameters and the symmetry of the {Appell} function $F_2(1,1)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {214--215},
     year = {1995},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/}
}
TY  - JOUR
AU  - V. F. Tarasov
TI  - A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1995
SP  - 214
EP  - 215
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/
LA  - en
ID  - RM_1995_50_1_a12
ER  - 
%0 Journal Article
%A V. F. Tarasov
%T A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1995
%P 214-215
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/
%G en
%F RM_1995_50_1_a12
V. F. Tarasov. A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 50 (1995) no. 1, pp. 214-215. http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/

[1] Tarasov B. V., Tarasov V. F., Dep. v VINITI No 576–V88. 21.01.1988

[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973

[3] Tarasov B. V., Tarasov V. F., Dep. v VINITI No 7167-V88. 28.09.1988

[4] Bete G., Solpiter E., Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1960

[5] Fok V. A., Nachala kvantovoi mekhaniki, Nauka, M., 1976

[6] Tarasov V. F., UMN, 48:3 (1993), 203–204 | MR | Zbl

[7] Tarasov B. V., Tarasov V. F., Dep. v \hbox {VINITI} No 8034-D88. 14.11.88

[8] Kheding Dzh., Vvvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965

[9] Freman N., Freman P. U., VKB-priblizhenie, Mir, M., 1967