A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 50 (1995) no. 1, pp. 214-215
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1995_50_1_a12,
author = {V. F. Tarasov},
title = {A~class of hypergeometric differential equations with three parameters and the symmetry of the {Appell} function $F_2(1,1)$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {214--215},
year = {1995},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/}
}
TY - JOUR AU - V. F. Tarasov TI - A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1995 SP - 214 EP - 215 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/ LA - en ID - RM_1995_50_1_a12 ER -
%0 Journal Article %A V. F. Tarasov %T A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1995 %P 214-215 %V 50 %N 1 %U http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/ %G en %F RM_1995_50_1_a12
V. F. Tarasov. A class of hypergeometric differential equations with three parameters and the symmetry of the Appell function $F_2(1,1)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 50 (1995) no. 1, pp. 214-215. http://geodesic.mathdoc.fr/item/RM_1995_50_1_a12/
[1] Tarasov B. V., Tarasov V. F., Dep. v VINITI No 576–V88. 21.01.1988
[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973
[3] Tarasov B. V., Tarasov V. F., Dep. v VINITI No 7167-V88. 28.09.1988
[4] Bete G., Solpiter E., Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1960
[5] Fok V. A., Nachala kvantovoi mekhaniki, Nauka, M., 1976
[6] Tarasov V. F., UMN, 48:3 (1993), 203–204 | MR | Zbl
[7] Tarasov B. V., Tarasov V. F., Dep. v \hbox {VINITI} No 8034-D88. 14.11.88
[8] Kheding Dzh., Vvvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965
[9] Freman N., Freman P. U., VKB-priblizhenie, Mir, M., 1967