Lie algebras of infinitesimal projective transformations of Lorentz manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 50 (1995) no. 1, pp. 69-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1995_50_1_a1,
     author = {A. V. Aminova},
     title = {Lie algebras of infinitesimal projective transformations of {Lorentz} manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {69--143},
     year = {1995},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1995_50_1_a1/}
}
TY  - JOUR
AU  - A. V. Aminova
TI  - Lie algebras of infinitesimal projective transformations of Lorentz manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1995
SP  - 69
EP  - 143
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1995_50_1_a1/
LA  - en
ID  - RM_1995_50_1_a1
ER  - 
%0 Journal Article
%A A. V. Aminova
%T Lie algebras of infinitesimal projective transformations of Lorentz manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1995
%P 69-143
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1995_50_1_a1/
%G en
%F RM_1995_50_1_a1
A. V. Aminova. Lie algebras of infinitesimal projective transformations of Lorentz manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 50 (1995) no. 1, pp. 69-143. http://geodesic.mathdoc.fr/item/RM_1995_50_1_a1/

[1] Aminova A. V., “O polyakh tyagoteniya, dopuskayuschikh gruppy proektivnykh dvizhenii”, DAN SSSR, 197:4 (1971), 807–809

[2] Aminova A. V., O beskonechno malykh preobrazovaniyakh, sokhranyayuschikh traektorii probnykh tel, Preprint ITF AN USSR No 71–85P, Kiev, 1971, 21 pp.

[3] Aminova A. V., “Gruppy proektivnykh i affinnykh dvizhenii v prostranstvakh obschei teorii otnositelnosti. I”, Tr. Geometr. semin., 6, Vses. in-t nauchn. i tekhn. inform., 1974, 317–346 | MR | Zbl

[4] Aminova A. V., “O kontsirkulyarnykh dvizheniyakh v rimanovykh prostranstvakh”, Gravitatsiya i teoriya otnositeln., 1975 (1976), no. 10–11, 127–138 | MR

[5] Aminova A. V., “O kosoortogonalnykh reperakh i nekotorykh svoistvakh parallelnykh tenzornykh polei na rimanovykh mnogoobraziyakh”, Izv. vuzov. Matematika, 1982, no. 6, 63–67 | MR | Zbl

[6] Aminova A. V., “O proektivno-gruppovykh svoistvakh rimanovykh prostranstv lorentsevoi signatury”, Izv. vuzov. Matematika, 1984, no. 6, 10–21 | MR | Zbl

[7] Aminova A. V., “Gruppy preobrazovanii rimanovykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 22, VINITI, M., 1990, 97–165 | MR

[8] Aminova A. V., “O $K$-prostranstvakh i prostranstvakh $V(K)$”, Izv. vuzov. Matematika, 1990, no. 11, 75–78 | MR

[9] Aminova A. V., “Psevdorimanovy mnogoobraziya s obschimi geodezicheskimi”, UMN, 48:2 (1993), 107–164 | MR | Zbl

[10] Aminova A. V., “Avtomorfizmy geometricheskikh struktur kak simmetrii differentsialnykh uravnenii”, Izv. vuzov. Matematika, 1994, no. 2, 3–10 | MR | Zbl

[11] Egorov I. P., Dvizheniya v prostranstvakh affinnoi svyaznosti, Izd-vo Kazan. un-ta, Kazan, 1965, 206 pp.

[12] Zhukova L. I., “Rimanovy prostranstva, dopuskayuschie proektivnye preobrazovaniya”, Izv. vuzov. Matematika, 1973, no. 6, 37–41 | Zbl

[13] Ibragimov N. Kh., Azbuka gruppovogo analiza, Znanie, M., 1989, 48 pp.

[14] Kruchkovich G. I., “K teorii rimanovykh prostranstv $V(K)$”, Sib. matem. zhurn., 2:3 (1961), 400–413 | MR

[15] Kruchkovich G. I., “Ob odnom klasse rimanovykh prostranstv”, Trudy semin. po vekt. i tenz. analizu, no. 11, Moskov. un-t, M., 1961, 103–128

[16] Kruchkovich G. I., “O prostranstvakh $V(K)$ i ikh geodezicheskikh otobrazheniyakh”, Trudy Vses. zaochn. energetich. in-ta, 1967, no. 33, 3–18 | MR

[17] Petrov A. Z., “O geodezicheskom otobrazhenii rimanovykh prostranstv neopredelennoi metriki”, Uch. zap. Kazan. un-t., 109:3 (1949), 7–36

[18] Petrov A. Z., “K teoreme o glavnykh osyakh tenzora”, Izv. fiz.-matem. obsch. (Kazan), 14:3 (1949), 37–51

[19] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 496 pp.

[20] Sinyukov N. R., “Ekvidistantnye rimanovy prostranstva”, Nauchn. ezheg., Odessa, 1957, 133–135

[21] Solodovnikov A. R., “Proektivnye preobrazovaniya rimanovykh prostranstv”, UMN, 1956, no. 11, 45–116 | MR | Zbl

[22] Solodovnikov A. R., “Geodezicheskie klassy prostranstv $V(K)$”, DAN SSSR, 111:1 (1956), 33–36 | MR | Zbl

[23] Solodovnikov A. R., “Prostranstva s obschimi geodezicheskimi”, Trudy semin. po vekt. i tenz. analizu, no. 11, Moskov. un-t, M., 1961, 43–102 | MR

[24] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR

[25] Shirokov P. A., “Issledovanie tenzornogo differentsialnogo uravneniya $D_iD_jD_k\varphi = 0$ dlya rimanovykh prostranstv”, Izv. Kazansk. fiz.-mat. obsch., 1:3 (1926), 123–134

[26] Shirokov P. A., “O skhodyaschikhsya napravleniyakh v rimanovykh prostranstvakh”, Izv. Kazansk. fiz.-matem. obsch., 7:3 (1934–1935), 77–78

[27] Shirokov P. A., Tenzornoe ischislenie, Izd-vo Kazan. un-ta, Kazan, 1961, 447 pp.

[28] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948, 316 pp.

[29] Beltrami E., “Teoria fondamentale degli spazii di curvature costante”, Ann. di Mat., 1868, no. 2, 232–255 ; Opere, III | DOI

[30] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Kazan, 1962, s. 119–144

[31] Davis W. R., Moss M. K., “Conservation laws in general relativity. II: Space-times admitting certain symmetry properties more general than motions”, Nuovo cim., 38:4 (1965), 1558–1569 | DOI | MR | Zbl

[32] Davis W. R., Oliver D. R., Jr., “Matter field space-times admitting mappings satisfying vanishing contraction of the Ricci tensor”, Ann. Inst. H. Poincare, A28:2 (1978), 197–206

[33] Dini U., “Sopra una problema che si presenta nella teoria generale delle rapprezentazioni geografich di una superficie su di un`altra”, Ann. di Mat., 3:7 (1869), 269–293 | DOI

[34] Forgacs P., Manton N. S., “Space-time symmetries in gauge theories”, Commun. Math. Phys., 72:1 (1980), 15–35 | DOI | MR

[35] Fubini G., “Sui gruppi trasformazioni geodetiche”, Mem. Acc. Torino. Cl. Fif. Mat. Nat., 53:2 (1903), 261–313

[36] Katzin G. H., Levine J., “Related first integral theorem: A method for obtaining conservation laws of dynamical systems with geodesic trajectories in Riemannian spaces admitting symmetries”, J. Math. Phys., 9:1 (1968), 8–15 | DOI | MR | Zbl

[37] Kim In-Bae, “Special concircular vector fields in Riemannian manifolds”, Hiroshima Math. J., 12:1 (1982), 77–91 | MR | Zbl

[38] Knebelman M. S., “Homothetic mappings of Riemann spaces”, Proc. Amer. Math. Soc., 9:6 (1958), 927–928 | DOI | MR

[39] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986

[40] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981

[41] Konigs M. G., “Sur les geodetiques integrales quadratiques”, Pril. II k: G. Darboux, Lecons sur la theorie generale des surfaces, IV, 1896, 368–404

[42] Levi-Civita T., “Sulle trasformazioni delle equazioni dinamiche”, Ann. di Mat., 24:2 (1896), 255–300 | DOI

[43] Okumura M., “On some types of connected spaces with concircular vector fields”, Tensor, 12:1 (1962), 33–46 | MR | Zbl

[44] Palais R. S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22, 1957 | MR

[45] Schouten I. A., Ricci-Calculus, Springer-Verlag, 1954, 516 pp. | MR | Zbl

[46] Schur F., “Uber den Zusammenhang der Raume konstanter Krummungs masses mit den projectiven Raumen”, Math. Ann., 27 (1886), 537–567 | DOI | MR

[47] Vries H. L., “Uber Riemannsche Raume, die infinitesimale konforme transformationen gestatten”, Math. Z., 60:3 (1954), 328–347 | DOI | MR | Zbl

[48] Witten E., “Some exact multipseudoparticle solutions of classical Yang-Mills theory”, Phys. Rev. Lett., 38:3 (1977), 121–124 | DOI

[49] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982

[50] Yano K., “Concircular geometry. I–IV”, Proc. Acad. Japan, 16 (1940), 195–200; 354–360; 442–448; 505–511 | MR | Zbl

[51] Yano K., The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957 | Zbl