On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 49 (1994) no. 4, pp. 163-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1994_49_4_a13,
     author = {S. Klama and L. A. Falkovsky},
     title = {On the connection between representations of groups of 3-dimensional rotations and helical translations for the {Helmholtz} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {163--164},
     year = {1994},
     volume = {49},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/}
}
TY  - JOUR
AU  - S. Klama
AU  - L. A. Falkovsky
TI  - On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1994
SP  - 163
EP  - 164
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/
LA  - en
ID  - RM_1994_49_4_a13
ER  - 
%0 Journal Article
%A S. Klama
%A L. A. Falkovsky
%T On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1994
%P 163-164
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/
%G en
%F RM_1994_49_4_a13
S. Klama; L. A. Falkovsky. On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 49 (1994) no. 4, pp. 163-164. http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/

[1] Falkovsky L. A., Klama S. (to appear) | Zbl

[2] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1983 | Zbl

[3] Uitteker E. T., Vatson G. N., Kurs sovremennogo analiza, gl. 17, Fizmatgiz, M., 1962

[4] Vatson G. N., Teoriya besselevykh funktsii, gl. 10, IL, M., 1949

[5] Mors P. M., Feshbakh G., Metody teoreticheskoi fiziki, gl. 10