On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 49 (1994) no. 4, pp. 163-164
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1994_49_4_a13,
author = {S. Klama and L. A. Falkovsky},
title = {On the connection between representations of groups of 3-dimensional rotations and helical translations for the {Helmholtz} equation},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {163--164},
year = {1994},
volume = {49},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/}
}
TY - JOUR AU - S. Klama AU - L. A. Falkovsky TI - On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1994 SP - 163 EP - 164 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/ LA - en ID - RM_1994_49_4_a13 ER -
%0 Journal Article %A S. Klama %A L. A. Falkovsky %T On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1994 %P 163-164 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/ %G en %F RM_1994_49_4_a13
S. Klama; L. A. Falkovsky. On the connection between representations of groups of 3-dimensional rotations and helical translations for the Helmholtz equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 49 (1994) no. 4, pp. 163-164. http://geodesic.mathdoc.fr/item/RM_1994_49_4_a13/
[1] Falkovsky L. A., Klama S. (to appear) | Zbl
[2] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1983 | Zbl
[3] Uitteker E. T., Vatson G. N., Kurs sovremennogo analiza, gl. 17, Fizmatgiz, M., 1962
[4] Vatson G. N., Teoriya besselevykh funktsii, gl. 10, IL, M., 1949
[5] Mors P. M., Feshbakh G., Metody teoreticheskoi fiziki, gl. 10