Ordinary differential equations in locally convex spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 49 (1994) no. 3, pp. 97-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1994_49_3_a2,
     author = {S. G. Lobanov and O. G. Smolyanov},
     title = {Ordinary differential equations in locally convex spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--175},
     year = {1994},
     volume = {49},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1994_49_3_a2/}
}
TY  - JOUR
AU  - S. G. Lobanov
AU  - O. G. Smolyanov
TI  - Ordinary differential equations in locally convex spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1994
SP  - 97
EP  - 175
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1994_49_3_a2/
LA  - en
ID  - RM_1994_49_3_a2
ER  - 
%0 Journal Article
%A S. G. Lobanov
%A O. G. Smolyanov
%T Ordinary differential equations in locally convex spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1994
%P 97-175
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1994_49_3_a2/
%G en
%F RM_1994_49_3_a2
S. G. Lobanov; O. G. Smolyanov. Ordinary differential equations in locally convex spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 49 (1994) no. 3, pp. 97-175. http://geodesic.mathdoc.fr/item/RM_1994_49_3_a2/

[1] Banakh S., Operations Lenéaires, Monografie Mathematyczne, I, Warszawa, 1932; Kurs funktsionalnogo analizu, “Radyanska shkola”, Kiïv, 1948

[2] Bukher V., Frelikher A., Differentsialnoe ischislenie v vektornykh prostranstvakh bez normy, Mir, M., 1970

[3] Vuvunikyan Yu. M., “Evolyutsionnye predstavleniya algebr obobschennykh funktsii”, Teoriya operatorov v funktsionalnykh prostranstvakh, Sb., Nauka, Novosibirsk, 1977, 99–120

[4] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii. Vyp. 3, Fizmatgiz, M., 1958 | Zbl

[5] Godunov A. N. i Durkin A. G., “O differentsialnykh uravneniyakh v lineinykh topologicheskikh prostranstvakh”, Vestnik MGU. Ser. 1. Matem., mekh., 4 (1969), 39–47 | MR | Zbl

[6] Godunov A. N., “O lineinykh differentsialnykh uravneniyakh v lineinykh topologicheskikh prostranstvakh”, Vestnik MGU. Ser. 1. matem., mekh., 5 (1974), 31–39 | MR | Zbl

[7] Godunov A. N., “Teorema Peano v beskonechnomernom gilbertovom prostranstve neverna dazhe v oslablennoi formulirovke”, Matem. zametki, 15:3 (1974), 467–477 | MR | Zbl

[8] Godunov A. N., “O teoreme Peano v banakhovykh prostranstvakh”, Funkts. analiz i ego pril., 9:1 (1975), 59–60 | MR | Zbl

[9] Dragilev M. M., Kondakov V. P., “Ob odnom klasse yadernykh prostranstv”, Matem. zametki, 8:2 (1970), 169–179 | MR | Zbl

[10] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[11] Epifanov O. V., “O suschestvovanii nepreryvnogo pravogo obratnogo dlya operatora v odnom klasse lokalno vypuklykh prostranstv”, Izv. Severo-Kavkazskogo nauch. tsentra vysshei shkoly, ser. estestv. nauki, 1991, no. 3, 3–4 | MR | Zbl

[12] Zabreiko P. P., Smirnov E. I., “K teoreme o zamknutom grafike”, Sib. matem. zhurn., 18:2 (1977), 304–313 | MR | Zbl

[13] Zabreiko P. P., “Printsip szhimayuschikh otobrazhenii v $K$-metricheskikh i lokalno vypuklykh prostranstvakh”, Dokl. AN BSSR, 34:12 (1990), 1065–1068 | MR | Zbl

[14] Ivanov V. V., “Polugruppy lineinykh operatorov v lokalno vypuklom prostranstv”, Teoriya operatorov v funktsionalnykh prostranstvakh, Sb., Nauka, Novosibirsk, 1977, 121–153

[15] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[16] Kats M. P., Kurato A., “Dostatochnye usloviya differentsiruemosti vektornoznachnykh funktsii”, Vestnik MGU. Ser. 1. Matem., mekh., 1976, no. 4, 44–51 | Zbl

[17] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | Zbl

[18] Lobanov S. G., “O lineinykh predstavleniyakh nelineinykh differentsialnykh uravnenii”, Vestnik MGU. Ser. 1. Matem., mekh., 1977, no. 1, 43–49 | MR | Zbl

[19] Lobanov S. G., “Eksponenta lineinogo operatora i razreshimost uravnenii ${\dot x}= Ax$ v lokalno vypuklykh prostranstvakh”, Shkola po teorii operatorov v funktsionalnykh prostranstvakh, Minsk, 1978, 84–85

[20] Lobanov S. G., “O edinstvennosti reshenii evolyutsionnykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. zametki, 26:4 (1979), 523–533 | MR | Zbl

[21] Lobanov S. G., “Primer nenormiruemogo prostranstva Freshe, v kotorom vsyakii lineinyi nepreryvnyi operator imeet eksponentu”, UMN, 34:4, 201–202 | MR | Zbl

[22] Lobanov S. G., “O razreshimosti lineinykh obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Vestnik MGU. Ser. 1. Matem., mekh., 1980, no. 2, 3–7 | MR | Zbl

[23] Lobanov S. G., “Dostatochnye usloviya differentsiruemosti otobrazhenii lokalno vypuklykh prostranstv”, Matem. zametki, 39:1 (1986), 70–82 | MR | Zbl

[24] Lobanov S. G., “Tsepnoe pravilo i ego obraschenie dlya otobrazhenii lokalno vypuklykh prostranstv”, Matem. zametki, 45:1 (1989), 43–56 | MR

[25] Lobanov S. G., “Teorema Pikara dlya obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Diff. uravn., 26:6 (1990), 1090

[26] Lobanov S. G., “O teoreme Peano v prostranstvakh Freshe”, Diff. uravn., 28:6 (1992), 1085

[27] Lobanov S. G., “O strukture mnozhestva reshenii obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Diff. uravn., 28:6 (1992), 1086

[28] Lobanov S. G., “Teorema Pikara dlya obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Izv. AN SSSR, Ser. matem., 56:6 (1992), 1217–1243 | MR | Zbl

[29] Lobanov S. G., “Teorema Peano neverna dlya lyubogo beskonechnomernogo prostranstva Freshe”, Matem. sb., 184:2 (1993), 83–86 | Zbl

[30] Lobanov S. G., “Obyknovennye differentsialnye uravneniya s nepreryvnoi pravoi chastyu v prostranstvakh Freshe”, Matem. zametki, 53:4 (1993), 77–91 | MR | Zbl

[31] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | Zbl

[32] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[33] Millionschikov V. M., “K teorii differentsialnykh uravnenii $\frac {dx}{dt}=f(x,t)$ v lokalno vypuklykh prostranstvakh”, Dokl. AN SSSR, 131:3 (1960), 510–514

[34] Millionschikov V. M., “K teorii differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 57(99):4 (1962), 385–406 | MR

[35] Mityagin B. S., “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl

[36] Nazarov V. I., “Razreshimost zadachi Koshi dlya differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Diff. uravn., 27:6 (1991), 979–988 | MR | Zbl

[37] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[38] Pasika E. E., “Primer differentsialnogo uravneniya pervogo poryadka v gilbertovom prostranstve bez nepreryvnoi zavisimosti ot nachalnogo usloviya”, Ukr. matem. zhurn., 35:6 (1983), 786–788 | MR | Zbl

[39] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967

[40] Polyakova N. S., “Teorema Frobeniusa dlya nekotorogo klassa lokalno vypuklykh prostranstv”, Ekstremalnye zadachi, funkts. analiz i ego pril., Izd-vo MGU, M., 1988, 93–95

[41] Radyno Ya. V., “Lineinye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh”, Diff. uravn., 13 (1977), 1402–1410 ; 1615–1624 ; 1796–1803 | MR | Zbl

[42] Radyno Ya. V., “Vektory eksponentsialnogo tipa v operatornom ischislenii i differentsialnykh uravneniyakh”, Diff. uravn., 21:9 (1985), 1559–1569 | MR

[43] Raikov D. A., “Dvukhstoronnyaya teorema o zamknutom grafike dlya topologicheskikh lineinykh prostranstv”, Sib. matem. zhurn., 7:2 (1966), 354–372

[44] Robertson A. P., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | Zbl

[45] Sadovskii B. N., “Predelno kompaktnye i uplotnyayuschie operatory”, UMN, 27:1 (1972), 81–146 | MR | Zbl

[46] Smolyanov O. G., “Lineinye predstavleniya evolyutsionnykh differentsialnykh uravnenii”, Dokl. AN SSSR, 221:6 (1975), 1288–1291 | MR | Zbl

[47] Smolyanov O. G., “O vysshikh proizvodnykh otobrazhenii lokalno vypuklykh prostranstv”, Matem. zametki, 22:5 (1977), 729–744 | MR | Zbl

[48] Smolyanov O. G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, Izd-vo MGU, M., 1979

[49] Sova M., “Usloviya differentsiruemosti v lineinykh topologicheskikh prostranstvakh”, Chekh. matem. zhurn., 16 (1966), 339–362 | MR | Zbl

[50] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[51] Tikhonov A. N., “O beskonechnykh sistemakh differentsialnykh uravnenii”, Matem. sb., 41:4 (1934), 556–560

[52] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | Zbl

[53] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[54] Shkarin S. A., “Neskolko rezultatov o razreshimosti obyknovennykh lineinykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 181:9 (1990), 1183–1195

[55] Shkarin S. A., Nekotorye svoistva lineinykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh i gladkikh otobrazhenii, Dissertatsiya na soiskanie uch. step. kand. fiz.-matem. nauk, Moskva, 1991 | Zbl

[56] Shkarin S. A., “Ob odnoi probleme O. G. Smolyanova, svyazannoi s beskonechnomernoi teoremoi Peano”, Diff. uravn., 28:6 (1992), 1092

[57] Edvards E., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[58] Andreu F., Mazón J. M., “On the compact differentiability in function spaces”, Proc. R. Ir. Acad., 85A:1 (1985), 109–117 | MR

[59] Astala K., “On Peano's theorem in locally convex spaces”, Stud. Math., 73:3 (1982), 213–223 | MR | Zbl

[60] Ball J. M., “Continuity properties of nonlinear semigroups”, J. Funct. Anal., 17:1 (1974), 91–103 | DOI | Zbl

[61] Ball J. M., “Measurability and continuity conditions for nonlinear evolutionary processes”, Proc. Amer. Math. Soc., 55:2 (1976), 353–358 | DOI | MR | Zbl

[62] Beals R., “Semigroups and abstract Gevrey spaces”, J. Funct. Anal., 10 (1972), 300–308 | DOI | MR | Zbl

[63] Beals R., “Hyperbolic equations and system with multiple characteristics”, Arch. Rational Mech. Anal., 48 (1972), 123–152 | DOI | MR | Zbl

[64] Beck A., “Uniqueness of flow solutions of differential equations”, Lect. Notes Math., 318, 1973, 30–50 | MR | Zbl

[65] Bessaga C., Pełczynski A., Rolewicz S., “On diametral approximative dimension and linear homogeneity of $F$-spaces”, Bull. Acad. Pol. Sci., 9 (1961), 677–683 | MR | Zbl

[66] Binding P., “On infinite-dimensional differential equations”, J. Diff. Equat., 24 (1977), 345–354 | DOI | MR

[67] Bonet J., Pérez Carreras P., Barreled locally convex spaces, Math. studies, 131, North-Holland, 1987 | MR | Zbl

[68] Caroll R., “On some hyperbolic equations with operator coefficients”, Proc. Japan Acad., 49 (1973), 233–238 | DOI | MR

[69] Cellina A., “On nonexistence of solution of differential equations in nonreflexive spaces”, Bull. Amer. Math. Soc., 78 (1972), 1069–1072 | DOI | MR | Zbl

[70] Chernoff P. R., Marsden J., “On continuity and smoothness of group actions”, Bull. Amer. Math. Soc., 76 (1970), 1044–1049 | DOI | MR | Zbl

[71] Chernoff P. R., “A note on continuity of semigroups of maps”, Proc. Amer. Math. Soc., 53:2 (1975), 318–320 | DOI | MR | Zbl

[72] Colombeau J. F., “Sur les équvations différenielles dans les espaces vectorieles topologiques ou bornologiques”, Rev. Roum. Math. Pures et Appl., 20:1 (1975), 19–32 | MR | Zbl

[73] De Blasi F. S., Pianigiani G., “Uniqueness for differential equations implies continuous dependence only in finite dimension”, Bull. London Math. Soc., 18:4 (1986), 379–382 | DOI | MR | Zbl

[74] Deimling K., “Ordinary differential equations in Banach spaces”, Lect. Notes Math., 596, 1977 | MR | Zbl

[75] Déleanu A., “O teorema de existenta pentru ecuatii diferentiale in spatic local-convexe”, Comm. Acad. RPR, 12:1 (1962), 23–28 | MR | Zbl

[76] De Wilde M., Closed graph theorem and webbed spaces, Research Notes in Math., 19, 1978 | Zbl

[77] Dieudonné J., “Deux exemples singuliers d'équvations différentielles”, Acta. Sci. Math., 12B (1950), 38–40 | MR | Zbl

[78] Donaldson J. A., “The abstract Cauchy problem”, J. Diff. Equat., 25 (1977), 400–429 | DOI | MR

[79] Dubinsky Ed., “Differential equations and differential calculus in Montel spaces”, Trans. Amer. Math. Soc., 110 (1964), 1–21 | DOI | MR | Zbl

[80] Dubinsky Ed., “Basic sequences in (s)”, Stud. Math., 54 (1977), 283–293 | MR

[81] Dubinsky Ed., The structure of nuclear Fréchet spaces, Lect. Notes Math., 720, 1979 | MR | Zbl

[82] Dugundji J., “An extension of Titze's theorem”, Pacific J. Math., 1 (1951), 353–367 | MR | Zbl

[83] Fattorini H. O., “Ordinary differential equations in linear topological spaces, I”, J. Diff. Equat., 5:1 (1969), 72–105 | DOI | MR | Zbl

[84] Fattorini H. O., “Ordinary differential equations in linear topological spaces, II”, J. Diff. Equat., 6:1 (1969), 50–70 | DOI | MR | Zbl

[85] Fattorini H. O., The abstract Cauchy problem, 1983

[86] Fattorini H. O., Second order linear differential equations in Banach spaces, North-Holland, 1985

[87] Garay B. M., Schäffer J. J., “More on uniqueness without continuous dependence in infinite dimension”, J. Diff. Equat., 64 (1986), 48–50 | DOI | MR | Zbl

[88] Garay B. M., “Cross-section of solution funnels in Banach spaces”, Stud. Math., 97:1 (1990), 13–26 | MR | Zbl

[89] Garay B. M., “An interpretation of Cellina's example: negligibility via the failure of Peano's theorem”, Acta Sci. Math. (Szeged), 54:1–2 (1990), 115–127 | MR | Zbl

[90] Garay B. M., “Deleting homeomorphisms and the failure of Peano's existence theorem in infinite-dimensional Banach spaces”, Funkc. Ekvac., 34:1 (1991), 85–93 | MR | Zbl

[91] Grothendieck A., “Sur les especes (F) et (DF)”, Summa Brasil. Math., 76 (1954), 57–123 ; Matematika, 2:3 (1958), 81–127 | MR

[92] Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc. New ser., 7:1 (1982), 65–222 | DOI | MR | Zbl

[93] Henríquez H. R., Hernández E. A., “On the abstract Cauchy problem in Fréchet spaces”, Proc. Amer. Math. Soc., 115:2 (1992), 353–360 | DOI | MR | Zbl

[94] Holmström L., “Superspaces of (s) with basis”, Stud. Math., 75:2 (1983), 139–152 | Zbl

[95] Horst E., “Differential equations in Banach spaces: five examples”, Arch. Math. (Basel), 46:5 (1986), 440–444 | MR | Zbl

[96] Hukuhara M., “Théorèms fundamentaux de la théorie des équations différentielles ordinaires dans l'espace vectoriel topologique”, J. Fac. Sci. Univ. Tokyo. Sec. I, 8:1 (1959), 111–138 | MR | Zbl

[97] Kantorovitz S., “The Hille-Yosida space of an arbitrary operator”, J. Math. Anal. and Appl., 136 (1988), 107–111 | DOI | MR | Zbl

[98] Kisynski J., “Semigroup of operators and some of their applications to partial differential equations”, Control theory and topics in functional analysis, V. 3 (Triest, 1974), 1976, 305–406 | MR

[99] Kōmura T., “Semi-groups of operators in locally convex spaces”, J. Funct. Anal., 2 (1968), 258–296 | DOI

[100] Lakshmikantham V., Leela S., Nonlinear differential equations in abstract spaces, V. 2, Oxford, 1981

[101] Michael E., “Three mappings theorems”, Proc. Amer. Math. Soc., 15:3 (1964), 410–415 | DOI | MR | Zbl

[102] Morales P., “Property of the set of global solutions for the Cauchy problem in a locally convex topological vector space”, Lect. Notes Math., 1131, 1985, 276–284 | MR

[103] Moscatelli V. B., Simões M. A., “Generalized Nash-Moser smoothing operators and the structure of Fréchet spaces”, Stud. Math., 87:2 (1987), 121–132 | MR | Zbl

[104] Ōuchi S., “Semi-groups of operators in locally convex spaces”, J. Math. Soc. Japan, 25:2 (1973), 265–276 | DOI | MR | Zbl

[105] Pisanelli D., “The Lie first theorem in a locally convex space”, An. Acad. Brazil. Ciênc., 49:3 (1974), 383–386 | MR

[106] Polewczak J., “Ordinary differential equations on closed subsets of Fréchet spaces with application to fixed point theorems”, Proc. Amer. Math. Soc., 107:4 (1989), 1005–1012 | DOI | MR | Zbl

[107] Robbin J. W., “On the existence theorem for differential equations”, Proc. Amer. Math. Soc., 19:4 (1968), 1005–1006 | DOI | MR | Zbl

[108] Rzepecki B., “On the method of Euler polygons for the differential equations in a locally convex space”, Bull. Acad. Pol. Sci. Math., 23:4 (1975), 411–414 | MR | Zbl

[109] Saint-Raymond J., “Une équation différentielle sans solution”, Initiation Seminar on Analysis: 1980/81, Comm. No C2 | Zbl

[110] Singbal-Vedak K., “Semigroups of operators on a locally convex space”, Ann. Soc. Math. Pol., 16 (1972), 53–74 | MR | Zbl

[111] Singbal-Vedak K., “A note on semigroups of operators on a locally convex space”, Proc. Amer. Math. Soc., 16 (1965), 696–702 | DOI | MR | Zbl

[112] Szép A., “Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces”, Stud. Sci. Math. Hungar., 6 (1973), 197–203 | MR

[113] Szufla S., “Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces”, Bull. Acad. Pol. Sci. Math., 26 (1978), 407–413 | MR | Zbl

[114] Szufla S., “On the equation ${\dot x}=f(t,x)$ in locally convex spaces”, Math. Nachr., 118 (1984), 179–185 | DOI | MR | Zbl

[115] Szufla S., “On the application of measure of noncompactness to existence theorems”, Rend. Sem. Mat. Univ. Padova, 75 (1986), 1–14 | MR | Zbl

[116] Ushijima T., “On the generation and smoothness of semi-group of linear operators”, J. Fac. Sci. Univ. Tokyo. Sect. I, 19:1 (1972), 66–127 | MR

[117] Ushijima T., “On the abstract Cauchy problem and semi-group of linear operators in locally convex spaces”, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 21:2, 93–122 | MR | Zbl

[118] Valdivia M., Topics in locally convex spaces, Math. studies, 67, North-Holland, 1982 | MR | Zbl

[119] Vogt D., “Charakterisierung der Unterräume von s”, Math. Z., 155:2 (1977), 109–117 | DOI | MR | Zbl

[120] Vogt D., “Power series space representations of nuclear Fréchet spaces”, Trans. Amer. Math. Soc., 319 (1990), 191–208 | DOI | MR | Zbl

[121] Watanabe M., “Weak conditions for generation of cosine families in linear topological spaces”, Proc. Amer. Math. Soc., 105:1 (1989), 151–158 | DOI | MR | Zbl

[122] Yorke J. A., “A continuous differential equation in Hilbert space without existence”, Funkcial. Ekvac., 13 (1970), 19–21 | MR | Zbl

[123] Yuasa T., “Differential equations in a locally convex spaces via the measure of nonprecompactness”, J. Math. Anal. and Appl., 84:2 (1981), 534–554 | DOI | MR

[124] Smolyanov O. G., “Odin metod dokazatelstva teorem edinstvennosti dlya evolyutsionnykh differentsialnykh uravnenii”, Matem. zametki, 25:2 (1979), 259–269 | MR

[125] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965