Efimov's theorem about complete immersed
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 41 (1986) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1986_41_5_a30,
     author = {T. Klotz-Milnor},
     title = {Efimov's theorem about complete immersed},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1986},
     volume = {41},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1986_41_5_a30/}
}
TY  - JOUR
AU  - T. Klotz-Milnor
TI  - Efimov's theorem about complete immersed
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1986
VL  - 41
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1986_41_5_a30/
LA  - ru
ID  - RM_1986_41_5_a30
ER  - 
%0 Journal Article
%A T. Klotz-Milnor
%T Efimov's theorem about complete immersed
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1986
%V 41
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1986_41_5_a30/
%G ru
%F RM_1986_41_5_a30
T. Klotz-Milnor. Efimov's theorem about complete immersed. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 41 (1986) no. 5. http://geodesic.mathdoc.fr/item/RM_1986_41_5_a30/

[1] Ahlfors L. V., Complex Analysis, 2nd ed., McGraw-Hill, New York, 1966 | MR | Zbl

[2] Amsler M.-H., “Des surfaces á courbure nègative constante dans l'espace á trois dimensions et de leurs singularities”, Math. Ann., 130 (1955), 234–256 | DOI | MR | Zbl

[3] Bierberbach L., “Hilberts Satz über Flächen konstanter negativer Krümmung”, Acta Math., 48 (1926), 319–327 | DOI | MR

[4] Bishop R. L., Crittenden R. J., Geometry of manifolds, Academic Press, New York, 1964 | MR | Zbl

[5] Blaschke W., Vorlesunger über Differentialgeometrie, Springer, Berlin, 1924, S. 206

[6] Cartan E., Leçons la géometrie des espaces de Riemann, Gautheri-Villars, Paris, 1951 | MR

[7] Kon-Fossen S. E., “Izgibaemost poverkhnostei v tselom”, UMN, 1936, no. 1, 33–76 | Zbl

[8] Efimov N. V., “Vozniknovenie osobennostei na poverkhnostyakh otritsatelnoi krivizny”, Mat. sb., 64 (1964), 286–320 | MR | Zbl

[9] Efimov N. V., “Giperbolicheskie zadachi v teorii poverkhnostei”, Trudy mezhdunarodnogo kongressa matematikov, Moskva, 1966, 177–188 | MR

[10] Hartman P., “On the local uniqueness of geodesics”, Amer. J. Math., 72 (1950), 723–730 | DOI | MR | Zbl

[11] Hartman P., Ordinary differential equations, Wiley, New York, 1964 | MR | Zbl

[12] Hartman P., Wintner A., “On the asymptotic curves of a surface”, Amer. J. Math., 73 (1951), 149–172 | DOI | MR | Zbl

[13] Hazzidakis J. N., “Ueber einige Eigenschaften der Flächen mit constanten Krümmungsmaass”, Crelles J., 3 (1880), 68–73

[14] Hilbert D., “Ueber Flächen von constanter Gausscher Krümmung”, Trans. Amer. Math. Soc., 2 (1901), 87–99 | DOI | MR | Zbl

[15] Hilbert D., Grundlagen der Geometrie, Teubner, Leipzig, 1922 | Zbl

[16] Hilbert D., Cohn-Vossen S., Geometry and the imagination, Chelsea, New York, 1952 | MR | Zbl

[17] Holmgren E., “Sur les surfaces á courbure constante négative”, C.R. Acad. Sci. Paris, 134 (1902), 740–743 | Zbl

[18] Van Kampen E. R., “The theorems of Gauss–Bonnet and Stoker”, Amer. J. Math., 60 (1938), 129–138 | DOI | MR

[19] Klotz T., “Abstract 63 T-408”, Notices Amer. Math. Soc., 10 (1963), 671

[20] Klotz T., Osserman R., “Complete surface in $E^3$ with constant mean curvature”, Comment. Math. Helv., 41 (1966–1967), 313–318 | DOI | MR | Zbl

[21] Kuiper N., “On $C^1$-isometric imbeddings I, II”, Ser. A 58, Indig. Math., Nederl. Akad. Wetensch. Proc., 17 (1955), 545–556 ; 638–689 | MR

[22] Laugwitz D., Differential and Riemannian Geometry, Academic Press, New York, 1965 | MR | Zbl

[23] Osserman R., “On complete minimal surfaces”, Arch. Rational Mech. Anal., 13 (1963), 392–404 | DOI | MR | Zbl

[24] Rudin W., Principles of mathematical analysis, 2-nd ed., Mc Graw-Hill, New York, 1964 | MR

[25] Sternberg S., Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, New York, 1964 | MR | Zbl

[26] Stoker J. J., “On the form of complete surfaces in $3$-dimensional space for which $K \leqslant -c^2$ or $K \geqslant c^2$”, Studies in Mathematical analysis and related topics, Stendford Univ. Press, Palo Alto, CA, 1962, 377–387 | MR

[27] Stoker J. J., Differential geometry, Willey Interscience, New York, 1969 | MR | Zbl

[28] Struik D. J., Lectures on classical differential geometry, M.A., Addison–Cambridge Wesley, 1950 | MR

[29] Weyl H., “Ueber die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement”, Vierteljahrsschrift Naturf. Ges. Zurich., 61 (1916), 40–72 | Zbl

[30] Willmore T. J., An interoduction to differential geometry, Oxford Press, Oxford, 1959 | MR | Zbl

[31] Efimov N. V., “Differentsialnye priznaki gomeomorfnosti nekotorykh otobrazhenii s primeneniem k teorii poverkhnostei”, Mat. sb., 76(118):4 (1968), 499–512 | MR | Zbl

[32] Vinogradskii A. S., “Granichnye svoistva poverkhnostei s medlenno menyayuscheisya otritsatelnoi kriviznoi”, Mat. sb., 82:2 (1970), 285–299 | MR | Zbl

[33] Kovantsov N. I., “Rebro vozvrata poverkhnosti nepolozhitelnoi krivizny”, Ukr. geometr. sb., 1978, no. 22, 81–92 | MR

[34] Poznyak E. G., “Geometricheskaya interpretatsiya regulyarnykh reshenii uravneniya $z_{xy}=\sin z$”, Diff. uravn., 15:7 (1979), 1332–1336 | MR | Zbl

[35] Wissler C., “Global Tschebyscheff–Netze auf Riemannschen Mannigfaltigkeiten und Fortsetzung von Flachen konstanter negativen Krummung”, Comment. math. helv., 47:3 (1972), 348–372 | DOI | MR | Zbl

[36] Rozendorn E. R., “O polnykh poverkhnostyakh otritsatelnoi krivizny $K \leqslant -1$ v evklidovykh prostranstvakh $E^3$ i $E^4$”, Mat. sb., 58(100):4 (1962), 453–478 | MR | Zbl

[37] Kon-Fossen S. E., “Parabolicheskaya krivaya”, Nekotorye voprosy differentsialnoi geometrii v tselom, Izd. 3-e, Nauka, M., 1981

[38] Rozendorn E. R., “Nepogruzhaemost polnykh $q$-metrik otritsatelnoi krivizny v klasse slabo neregulyarnykh poverkhnostei”, Mat. sb., 89(131):1 (1972), 83–92 | MR | Zbl

[39] Rozendorn E. R., “Slabo neregulyarnye poverkhnosti otritsatelnoi krivizny”, UMN, 21:5 (1966), 59–116 | MR | Zbl

[40] Efimov N. V., “Poverkhnosti s medlenno izmenyayuscheisya otritsatelnoi kriviznoi”, UMN, 21:5 (1966), 3–58 | MR | Zbl

[41] Efimov N. V., Poznyak E. G., “Nekotorye preobrazovaniya osnovnykh uravnenii teorii poverkhnostei”, DAN SSSR, 137:1 (1961), 25–27 | MR

[42] Rozendorn E. R., “Issledovanie osnovnykh uravnenii teorii poverkhnostei v asimptoticheskikh koordinatakh”, Mat. sb., 70 (112):4 (1966), 490–507 | MR | Zbl

[43] Kaidasov Zh., Shikin S. V., “O regulyarnom izometricheskom pogruzhenii v $E^3$ neogranichennykh oblastei ploskosti Lobachevskogo”, Vestn. MGU. Ser. mat., mekh., 1986, no. 5

[44] Efimov N. V., “Nepogruzhaemost poluploskosti Lobachevskogo”, Vestn. MGU. Ser. mat., mekh., 1975, no. 2, 83–86 | MR | Zbl

[45] Vorobëva L. I., “Nevozmozhnost $C^2$-izometricheskogo pogruzheniya v $E^3$ poluploskosti Lobachevskogo”, Vestn. MGU. Ser. mat., mekh., 1976, no. 5, 42–46 | MR

[46] Poznyak E. G., “Izometricheskie pogruzheniya dvumernykh rimanovykh metrik v evklidovy prostranstva”, UMN, 28:4 (1973), 47–76 | MR | Zbl

[47] Poznyak E. G., Shikin E. V., “Poverkhnosti otritsatelnoi krivizny”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 12, VINITI, M., 1974, 171–207

[48] Aminov Yu. A., “Problemy vlozhenii: geometricheskie i topologicheskie aspekty”, Itogi nauki i tekhniki. Problemy geometrii, 13, VINITI, M., 1982, 119–156 | MR

[49] Moore J. D., “Isometric immersions of Riemannian products”, J. of Diff. Geometri, 5:1 (1971), 159–168 ; Issledovaniya po metricheskoi teorii poverkhnostei, vyp. 18, Novoe v zarubezhnoi nauke, Matematika, Mir, M., 1980, S. 264–276) | MR | Zbl | MR | Zbl

[50] Alexander S., Maltz R., “Isometric immersions of Riemannian products in euclidian space”, J. of Diff. Geometry, 11:1 (1976), 47–57 ; Issledovaniya po metricheskoi teorii poverkhnostei, vyp. 18, Novoe v zarubezhnoi nauke, Matematika, Mir, M., 1980, S. 277–291) | MR | Zbl | MR | Zbl