@article{RM_1986_41_2_a25,
author = {J. K. Moser and S. M. Webster},
title = {Normal forms for real surfaces in $\mathbb C^2$ near complex},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1986},
volume = {41},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1986_41_2_a25/}
}
J. K. Moser; S. M. Webster. Normal forms for real surfaces in $\mathbb C^2$ near complex. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 41 (1986) no. 2. http://geodesic.mathdoc.fr/item/RM_1986_41_2_a25/
[1] Bedford E., Gaveau B., “Envelopes of holomorphy of certain $2$-spheres in $\mathbb{C}^2$”, Amer. J. Math., 105 (1983) | DOI | MR | Zbl
[2] Birkhoff G. D., “The restricted problem of three bodies”, Rend. Circ. Mat. Palermo, 39 (1915), 265–334 | DOI | Zbl
[3] Birkhoff G. D., “Surface transformations and their dynamical applications”, Acta Math., 43 (1920), 1–119 | DOI | MR | Zbl
[4] Bishop E., “Differentiable manifolds in complex Euclidean space”, Duke Math. J., 32 (1965), 1–22 | DOI | MR
[5] Chzhen S. S., Mozer Yu. K., “Veschestvennye giperpoverkhnosti v kompleksnykh mnogoobraziyakh”, UMN, 38:2 (1983), 149–193 | MR
[6] Freeman M., “Polinomial hull of a thin two-manifold”, Pacific J. Math., 38 (1971), 337–389 | MR
[7] Hunt L. R., “The local envelope of holomorphy of an $n$-manifold in $\mathbb{C}^n$”, Bol. Un. Math. Ital., 4 (1971), 12–35 | MR | Zbl
[8] Kenig C., Webster S., “The local hull of holomorphy of a surface in the space of two complex variables”, Inv. Math., 67 (1982), 1–121 | DOI | MR
[9] Lewy H., “On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables”, Ann. of Math., 64 (1956), 514–522 | DOI | MR | Zbl
[10] Moser J., “On the integrability of area-preserving Cremona mappings near an elliptic fixed point”, Boletin de la Sociedad Matematica Mexanicana (2), 5 (1960), 176–180 | MR | Zbl
[11] Siegel C. L., Moser J. K., Lectures on Celestial Mechanics, Springer, 1971 | MR | Zbl
[12] Siegel C. L., “Vereinfachter Beweis eines Satzes von J. Moser”, Comm. Pure Appl. Math., 10 (1957), 305–309 | DOI | MR | Zbl